吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (2): 425-432.doi: 10.13229/j.cnki.jdxbgxb20211116

• 车辆工程·机械工程 • 上一篇    

薄壁件铣削加工颤振的图像特征提取与识别

李茂月(),刘硕,田帅,肖桂风   

  1. 哈尔滨理工大学 先进制造智能化技术教育部重点实验室,哈尔滨 150080
  • 收稿日期:2021-10-28 出版日期:2022-02-01 发布日期:2022-02-17
  • 作者简介:李茂月(1981-),男,教授,博士.研究方向:智能加工及检测技术.E-mail:lmy0500@163.com
  • 基金资助:
    国家自然科学基金项目(51975169);黑龙江省普通高校基本科研业务费专项项目(2019-KYYWF-0204)

Image feature extraction and recognition of milling chatter of thin walled parts

Mao-yue LI(),Shuo LIU,Shuai TIAN,Gui-feng XIAO   

  1. Key Laboratory of Advanced Manufacturing and Intelligent Technology,Ministry of Education,Harbin University of Science and Technology,Harbin 150080,China
  • Received:2021-10-28 Online:2022-02-01 Published:2022-02-17

摘要:

目前,针对薄壁件铣削加工过程中的颤振识别问题,普遍采用传感器信号进行判别与预测,而没有建立颤振特征与加工表面的相关联系。本文利用图像处理与模式识别技术,通过铣削表面图像实现薄壁件加工状态的精确辨识与预测。首先,设计了混合滤波方案,实现了采集图像的预处理;然后,通过改进的局部二值模式和灰度共生矩阵提取图像的颤振纹理特征,并以K近邻分类算法对铣削加工过程中采集的图像进行预测和识别。实验结果表明:该模型辨识的准确率为95.5%,算法平均运行时间为0.069 s。实验结果验证了该方法具有较高的辨识准确率,同时满足颤振预测及检测的实时性需求,对薄壁件铣削加工状态的识别及智能加工具有良好的指导意义。

关键词: 图像识别, 铣削颤振, 薄壁件, 局部二值模式, 混合滤波

Abstract:

At present, sensor signals are widely used to identify and predict the chatter in the milling process of thin-walled parts, but the correlation between the chatter characteristics and the machined surface is not established. In this paper, image processing and pattern recognition technology are used to accurately identify and predict the machining state of thin-walled parts through milling surface images. Firstly, a hybrid filtering scheme is designed to realize the preprocessing of the collected image, then the chatter texture features of the image are extracted through the improved local binary pattern and gray level co-occurrence matrix, and the images collected in the milling process are predicted and recognized by k-nearest neighbor classification algorithm. The experimental results show that the accuracy of the model identification is 95.5% and the average running time of the algorithm is 0.069 s. The experimental results show that the method has high identification accuracy, meets the real-time requirements of chatter prediction and detection, and has good guiding significance for milling state identification and intelligent machining of thin-walled parts.

Key words: image recognition, milling chatter, thin-walled parts, local binary pattern, hybrid filtering

中图分类号: 

  • TH741

图1

三种铣削阶段"

图2

混合滤波预处理"

图3

原始LBP算子"

图4

八种权重分布"

图5

实验安装结构"

图6

加工实验现场"

图7

原始LBP与改进LBP图谱对比"

图8

LBP归一化频率直方图"

表1

全局特征统计量"

加工状态ASM均值ENT均值CON均值IDM均值ASM标准差ENT标准差CON标准差IDM标准差
稳定阶段0.590 420.921 040.168 160.916 010.012 640.023 870.018 100.029 32
过渡阶段0.245 851.775 200.243 530.879 020.014 140.051 860.034 920.051 38
颤振阶段0.091 192.712 510.468 250.893 720.028 980.089 100.088 090.028 98

图9

KNN分类模型"

图10

算法识别准确率对比"

表2

算法平均运行时间对比"

算法特征提取时间/s模式识别时间/s
原始LBP0.0310.026
改进LBP0.0350.024
改进LBP+GLCM0.0400.029
1 张雪薇, 于天彪, 王宛山. 薄壁零件铣削三维颤振稳定性建模与分析[J]. 东北大学学报: 自然科学版, 2015, 36(1): 99-103.
Zhang Xue-wei, Yu Tian-biao, Wang Wan-shan. Modeling and analysis for 3D chatter stability of thin-walled parts in milling process[J]. Journal of Northeastern University(Natural Science), 2015, 36(1): 99-103.
2 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23.
Wang Zhi-xue, Liu Xian-li, Li Mao-yue, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020,56(24): 1-23.
3 Schmitz T. The microphone feedback analogy for chatter in machining[J/OL]. [2021-08-05].
4 Li L H, An Q B. An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis[J]. Measurement, 2016, 79(4): 44-52.
5 Lin Jian-gang, Wang Dong-xing, Tian Hong-zhi,et al. Surface defect detection of machined parts based on machining texture direction[J]. Measurement Science and Technology, 2021, 32(2): 1-12.
6 Szydlowski M, Powalka B. Chatter detection algorithm based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(5-8): 517-528.
7 Lei N, Soshi M. Vision-based system for chatter identification and process optimization in high-speed milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2757-2769.
8 Khalifa O, Densibali A, Faris W. Image processing for chatter identification in machining processes[J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(5/6): 443-449.
9 冯东海. 基于计算机视觉的薄壁件铣削颤振在线监测[D]. 秦皇岛: 燕山大学机械工程学院, 2018.
Feng Dong-hai. Chatter monitoring on-line of milling thin-walled parts based on computer vision[D]. Qinhuangdao: College of Mechanical Engineering, Yanshan University, 2018.
10 林洁琼, 周晓勤, 孔繁森, 等. 再生切削颤振系统动态响应谐参数辨识[J]. 吉林大学学报: 工学版, 2009, 39(4): 964-969.
Lin Jie-qiong, Zhou Xiao-qin, Kong Fan-sen, et al. Harmonic parameter identification of dynamic response in regenerative machining chatter system[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(4): 964-969.
11 李秀怡. 图像纹理检测与特征提取技术研究综述[J]. 中国管理信息化, 2017, 20(23): 175-178.
Li Xiu-yi. Review of image texture detection and feature extraction[J]. China Management Information, 2017, 20(23): 175-178.
12 Ojala T, pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
13 戴金波, 肖霄, 赵宏伟. 基于低分辨率局部二值模式的人脸识别[J]. 吉林大学学报: 工学版, 2013, 43(2): 435-438.
Dai Jin-bo, Xiao Xiao, Zhao Hong-wei. Human face recognition based on low resolution local binary pattern[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(2): 435-438.
14 Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.
15 鲁恒润, 王卫东, 徐志强, 等. 基于机器视觉的煤矸特征提取与分类研究[J]. 煤炭工程, 2018, 50(8): 137-140.
Lu Heng-run, Wang Wei-dong, Xu Zhi-qiang, et al. Research on feature extraction and classification of coal gangue based on machine vision[J]. Coal Engineering, 2018, 50(8): 137-140.
16 Mou Wen-ping, Zhu Shao-wei, Jiang Zhen-xi, et al.Vibration signal-based chatter identification for milling of thin-walled structure[J]. Chinese Journal of Aeronautics, 2020, 35(1): 204-214.
17 孙艺珊, 李晓洁, 赵凯. 改进LBP和HSV颜色直方图相结合的地表状态识别[J]. 测绘通报, 2020(2): 29-36, 71.
Sun Yi-shan, Li Xiao-jie, Zhao Kai. A combined algorithm of improved LBP and HSV for surface state recognition[J]. Bulletin of Surveying and Mapping, 2020(2): 29-36, 71.
[1] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[2] 车翔玖,刘华罗,邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038-2044.
[3] 王培智, 田地, 龙涛, 李抵非, 邱春玲, 刘敦一. 用于TOF-SIMS的锆石样品图像自动聚焦算法[J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[4] 王玉, 申铉京, 陈海鹏, 谭颖. 多角度特征融合的视频人脸纹理表示及识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1954-1960.
[5] 耿庆田, 于繁华, 赵宏伟, 王闯. 基于颜色特征的火焰检测新算法[J]. 吉林大学学报(工学版), 2014, 44(6): 1787-1792.
[6] 李根, 李文辉. 基于思维进化的机器学习的遮挡人脸识别[J]. 吉林大学学报(工学版), 2014, 44(5): 1410-1416.
[7] 李阳, 文敦伟, 王珂, 刘乐. 多核学习矩阵化最小二乘支持向量机算法及肺结节识别[J]. 吉林大学学报(工学版), 2014, 44(2): 508-515.
[8] 戴金波, 肖霄, 赵宏伟. 基于低分辨率局部二值模式的人脸识别[J]. 吉林大学学报(工学版), 2013, 43(02): 435-438.
[9] 王甦菁1,周春光1,张娜1,李建朋2,张利彪1. 基于形状和纹理特征的人脸年龄估计方法[J]. 吉林大学学报(工学版), 2011, 41(05): 1383-1387.
[10] 郭魂,左敦稳 ,刘远伟,王珉,童国权 . 航空腔型薄壁件铣削变形的预测[J]. 吉林大学学报(工学版), 2008, 38(01): 84-88.
[11] 王荣本, 王超, 初秀民. 路面破损图像识别研究进展[J]. 吉林大学学报(工学版), 2002, (4): 91-97.
[12] 阚君武, 邵承会, 唐可洪, 王主玉. 基于商标识别的链板自动分选系统[J]. 吉林大学学报(工学版), 2002, (3): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!