吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 541-549.doi: 10.13229/j.cnki.jdxbgxb20200846

• 材料科学与工程 • 上一篇    

用于高模量沥青砼的复合改性硬质沥青低温性能

夏全平1,2(),高江平1(),罗浩原3,张其功4,李志杰5,杨飞6   

  1. 1.长安大学 公路学院,西安 710064
    2.山东省交通运输事业服务中心,济南 250002
    3.东南大学 交通学院,南京 211189
    4.东营市公路事业发展中心,山东 东营 257091
    5.山东景建集团公司,山东 潍坊 262100
    6.山东省交通科学研究院,山东 济南 250031
  • 收稿日期:2020-11-03 出版日期:2022-03-01 发布日期:2022-03-08
  • 通讯作者: 高江平 E-mail:xiaquanping@163.com;2227940211@qq.com
  • 作者简介:夏全平(1988-),男,博士研究生.研究方向:路面工程材料. E-mail:xiaquanping@163.com
  • 基金资助:
    国家自然科学基金项目(51008033)

Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete

Quan-ping XIA1,2(),Jiang-ping GAO1(),Hao-yuan LUO3,Qi-gong ZHANG4,Zhi-jie LI5,Fei YANG6   

  1. 1.Highway School,Chang'an University,Xi'an 710064,China
    2.Shandong Transportation Service Center,Jinan 250002,China
    3.School of Transportation,Southeast University,Nanjing 211189,China
    4.Dongying Highway Development Center,Dongying 257091,China
    5.Shandong Jingjian Group Co. ,Ltd. ,Weifang 262100,China
    6.Shandong Academy of Communications Sciences,Jinan 250031,China
  • Received:2020-11-03 Online:2022-03-01 Published:2022-03-08
  • Contact: Jiang-ping GAO E-mail:xiaquanping@163.com;2227940211@qq.com

摘要:

为了寻找高温稳定性良好且具备足够低温抗裂性能的硬质沥青作为高模量沥青混凝土的胶结材料,选取SBS改性沥青对6类天然硬质沥青进行复合改性,进而对复合硬质改性沥青、沥青胶浆、沥青混合料的低温性能进行全面考察。结果表明:经过改性后,沥青、沥青胶浆、沥青混合料的低温性能有了不同程度的改善;在众多低温性能的评价指标中,沥青胶浆的低温临界开裂温度(TCR)与混合料低温弯曲的测试结果最具相关性,在进行高模量沥青混凝土胶结料选择时,应尤其注重对该项指标的考察。

关键词: 道路工程, 高模量沥青混凝土, 硬质沥青, 低温抗裂性能, 抗车辙性能, 界面黏附系数

Abstract:

To find hard asphalts with perfect high temperature stability and low temperature crack resistance as the cementation material of high-modulus asphalt concrete, SBS modified asphalt was used to modify six kinds of natural hard asphalt. The relationship between the dosage of SBS and the dynamic modulus of the mixture was explored. The low-temperature performance of this hard asphalt before and after the modification was investigated from the three levels including asphalt, asphalt mortar and asphalt mixture. The results show that the low temperature performances of the modified asphalt, asphalt mortar, and mixture also have different degrees improvements. It is a good choice for producing high-modulus asphalt concrete. The study also found that among the many low-temperature performance evaluation indicators, low-temperature critical cracking temperature (TCR) of asphalt mortar is the most relevant to the test results of low-temperature bending of the mixture. When selecting asphalt binder for high-modulus asphalt concrete, special attention should be paid to this indicator.

Key words: road engineering, high modulus asphalt concrete, hard asphalt, low temperature crack resistance performance, rutting resistance, interfacial adhesion coefficient

中图分类号: 

  • U414

表1

采用沥青的基本技术指标"

指标沥青型号测试方法
AL-50#IT-50#SP-50#SC-50#XJ-50#TZ-50#SBS-I
25 ℃针入度/(0.1 mm)49.247.061.656.254.142.740.3T0604
针入度指数PI0.8-1.00.1-1.8-0.170.550.31T0604
软化点/℃48.550.647.948.35362.587.5T0606
5 ℃延度/cm(SBS)------35T0605
10 ℃延度/cm7.210.28.017159-T0605
15 ℃延度/cm13.057.013.7>1008981-T0604
RTFOT质量变化-0.2-0.1-0.1-0.1-0.10.0-0.045T0610
残留针入度59.672.762.5626375.677.2T0604
10 ℃残留延度/cm4.14.84.83脆断脆断-T0605
5 ℃残留延度/cm(SBS)------20T0605
PG分级64-1670-1664-1664-2276-1682-1670-22AASHTO M320
英标针入度分级50/7040/6050/7050/7035/5030/4540/60EN 12591

图1

SBS改性沥青掺量对动态模量的影响"

表2

复合改性沥青的基本技术指标"

指标沥青型号测试方法
AL-SBSIT-SBSSP-SBSSC-SBSXJ-SBSTZ-SBS
25 ℃针入度/(0.1 mm)343032412819T0604
针入度指数PI1.560.910.491.11.210.65T0604
软化点/℃81.185.681.379.69193.6T0606
英标针入度分级30/4530/4530/4530/4520/3010/20EN 12591

图2

六种沥青的低温延度"

图3

六种沥青的PG分级"

图4

6种沥青和沥青胶浆的低温温度应力"

图5

六种沥青和沥青胶浆的临界裂纹开裂温度(TCR)"

图6

六种沥青胶浆中的沥青-矿粉界面黏结能力对比"

表3

六种高模量沥青混凝土的汉堡车辙性能"

沥青样品车辙深度/mm抗车辙性能排名技术要求
AL-50#6.210≤20
IT-50#19 000次后失效12
SP-50#5.37
SC-50#6.29
XJ-50#5.78
TZ-50#4.03
AL-SBS3.72
IT-SBS7.811
SP-SBS4.45
SC-SBS5.16
XJ-SBS4.24
TZ-SBS2.11

表4

六种高模量沥青混合料低温性能的弯曲小梁试验结果"

沥青样品空隙率/%弯曲模量/MPa弯曲破坏应变εB/με低温弯曲性能排名
AL-50#2.8246925607
IT-50#2.63061169411
SP-50#2.53863171610
SC-50#1.8317931255
XJ-50#2.0318619899
TZ-50#2.43059145712
AL-SBS3.7275939982
IT-SBS2.9370328356
SP-SBS2.8357033844
SC-SBS2.5324142011
XJ-SBS2.4301138533
TZ-SBS2.8416724218
1 Yang Guang, Wang Xu-dong. Rationality of applying high-modulus asphalt concrete in long-life asphalt pavement with semi-rigid base[J]. Journal of Highway and Transportation Research and Development (English Edition), 2020, 14(2): 16-24.
2 曾学明. 埃塞AA高速公路高模量沥青混凝土基层施工技术探究[D]. 西安: 长安大学公路学院, 2015.
Zeng Xue-ming. Study on the expressway construction technology for high modulus asphalt mixture base course in addis ababa-adama, ethiopia[D]. Xi'an: Highway College, Chang'an University, 2015.
3 Chen Yu, Wang Han-ning, Xu Shi-bing, Y et al. High modulus asphalt concrete: a state-of-the-art review[J]. Construction and Building Materials, 2020, 237: No.117653.
4 卢桂林, 许新权, 唐志赟, 等. 高模量改性剂的作用机理及应用研究[J]. 建筑材料学报, 2021, 24(2): 355-361.
Lu Gu-lin, Xu Xin-Quan, Tang Zhi-yu, et al. Research on mechanism and application of high modulus agent[J]. Journal of Building Material, 2021, 24(2): 355-361.
5 Zhu Jun-qing, Ma Tao, Fan Jian-wei, et al. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement[J]. Journal of Cleaner Production, 2020, 263: No.121447.
6 . Essais statiques sur mélanges hydrocarbonés, part 1: essai DURIEZ sur mélanges hydrocarbonés à chaud [S].
7 Moghaddam T B, Baaj H. Rheological characterization of high-modulus asphalt mix with modified asphalt binders[J]. Construction and Building Materials, 2018, 193: 142-152.
8 Sybilski D, Wojciech B, Krajewski M. High modulus asphalt concrete with limestone aggregate[J]. International Journal of Pavement Research & Technology, 2010, 3(2): 96-101.
9 Zou X L, Sha A M, Jiang W, et al. Effects of modifier content on high-modulus asphalt mixture and prediction of fatigue property using weibull theory[J]. Road Materials & Pavement Design, 2017, 18(S3): 88-96.
10 王朝辉, 舒诚, 韩冰,等. 高模量沥青混凝土研究进展[J]. 长安大学学报: 自然科学版, 2020, 40(1): 1-15.
Wang Chao-hui, Shu Cheng, Han Bing, et al. Research progress of high modulus asphalt concrete[J]. Journal of Chang'an University(Natural Science Edition),2020,40(1):1-15.
11 熊锐, 乔宁, 褚辞, 等. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报: 工学版, 2020, 50(1): 183-190.
Xiong Rui, Qiao Ning, Chu Ci, et al. Investigation on low-temperature rheology and adhesionproperties of salt-doped asphalt mortars[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 183-190.
12 王林, 王晓燕. 山东在长寿命路面技术方面的探索[J]. 中国公路, 2020, 26(14): 33-35.
Wang Lin, Wang Xiao-yan. Exploration of long life pavement technology in Shandong Province[J]. Chinese Higway, 2020, 26(14): 33-35.
13 王晓燕, 王林, 付建村, 等. 欧美沥青路面技术比较研究与我国的工程实践[R]. 济南:山东省交通科学研究院, 2015.
14 韦大川, 王云鹏, 李世武, 等. 橡胶粉与SBS复合改性沥青路用性能与微观结构[J]. 吉林大学学报: 工学版, 2008, 38(3): 525-529.
Wei Da-chuan, Wang Yun-peng, Li Shi-wu, et al. Physical properties and microstructure of waste rubber powder and SBS complex modified asphalt[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(3): 525-529.
15 董雨明. 硬质沥青及其混合料流变特性与低温性能研究[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2015.
Dong Yu-ming. Research on rheological property and low temperature performance of hard grade bitumen and its mixture[D]. Harbin: School of Transportation Science and Institute of Technology, Harbin Institute of Technology, 2015.
16 LPC bituminous mixtures design guide[Z]. Laboratoire Central des Ponts et Chaussees,2010.
17 .公路工程沥青及沥青混合料试验规程 [S].
18 . 公路沥青路面施工技术规范 [S].
19 沈金安. 沥青及沥青混合料路用性能[M]. 北京:人民交通出版社, 2001.
20 Luo Hao-yuan, Leng Hui-kang, Ding Hai-bo, et al. Low-temperature cracking resistance, fatigue performance and emission reduction of a novel silica gel warm mix asphalt binder[J]. Construction and Building Materials, 2020, 231: No.117118.
21 R49—09. Determination of low-temperature performance grade (PG) of asphalt binders [S].
22 罗浩原, 黄晓明. 废油再生沥青二次老化后的性能与组分变化[J]. 中国公路学报, 2021, 34(10): 98-110.
Luo Hao-yuan, Huang Xiao-ming. Reseach on change of performance anc component of recycled oil regenerated asphalt during secondary aging[J]. China Journal of Highway Transportation, 2021, 34(10): 98-110.
23 Shenoy A. Single-event cracking temperature of asphalt pavements directly from bending beam rheometer data [J]. Journal of Transportation Engineering, 2002, 128(5): 465-471.
24 吴建涛. 基于流变特性的沥青与集料交互作用能力的研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2009.
Wu Jian-tao. Studies on interaction capability of asphalt and aggregate based on rheological characteristics[D]. Harbin: School of Transportation Science and Institute of Technology, Harbin Institute of Technology, 2009.
25 AA . Standard method of test for hamburg wheel-track testing of compacted hot mix asphalt (HMA)[S].
[1] 董伟智,张爽,朱福. 基于可拓层次分析法的沥青混合料路用性能评价[J]. 吉林大学学报(工学版), 2021, 51(6): 2137-2143.
[2] 冉武平,陈慧敏,李玲,冯立群. 干湿循环下粗粒土回弹模量演变规律及模型预估和修正[J]. 吉林大学学报(工学版), 2021, 51(6): 2079-2086.
[3] 许哲谱,杨群. 基于实时路况地图的短期养护作业开始时间优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1763-1774.
[4] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[5] 王元元,孙璐,刘卫东,薛金顺. 测量路面三维纹理双目重构算法的约束改进[J]. 吉林大学学报(工学版), 2021, 51(4): 1342-1348.
[6] 彭勇,杨汉铎,陆学元,李彦伟. 基于离散元法的空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 956-964.
[7] 朱伟刚,朱超,张亚球,魏海斌. 基于卷积格网曲面拟合滤波算法的数字高程模型构建及质量评价[J]. 吉林大学学报(工学版), 2021, 51(3): 1073-1080.
[8] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[9] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
[10] 阳恩慧,徐加秋,唐由之,李奥,邱延峻. 温拌剂对沥青断裂和老化性能的影响[J]. 吉林大学学报(工学版), 2021, 51(2): 604-610.
[11] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
[12] 方宇,孙立军. 基于生存分析的城市桥梁使用性能衰变模型[J]. 吉林大学学报(工学版), 2020, 50(2): 557-564.
[13] 王芳,李晓光,郭慧,胡佳. 基于驾驶员视觉兴趣区的沙漠草原公路曲线间直线段线形指标优化[J]. 吉林大学学报(工学版), 2020, 50(1): 114-120.
[14] 王英,李萍,念腾飞,姜继斌. 基于动水冲刷作用的沥青混合料短期水损害特性[J]. 吉林大学学报(工学版), 2020, 50(1): 174-182.
[15] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!