吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 897-909.doi: 10.13229/j.cnki.jdxbgxb20200950
• 计算机科学与技术 • 上一篇
Da-xiang LI1,2(),Meng-si CHEN1,Ying LIU1,2
摘要:
针对目前多数人心理状态处于亚健康的问题,设计了一种基于时空注意力的双向长短时记忆(LSTM)网络,以实现微表情图像特征提取及识别,从而了解人们试图掩饰的情绪。该网络由双向LSTM模块、空间注意力模块及时间注意力模块三大部分组成。将微表情视频图像作为输入,所学习的网络能够有选择性地聚焦于每帧有显著区别的动作单元,并对不同帧给予不同程度的关注度。同时,考虑到模块之间的相关性,还设计一个新的正则化的交叉熵损失函数,进一步优化网络。最后,在CASME、CASMEⅡ、CAS(ME)2、SAMM四个数据集上进行了对比实验。实验结果表明,本文方法能够提高微表情识别的精度,优于其他方法。
中图分类号:
1 | Haggard E A, Isaacs K S. Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy[M]. Boston: Springer, 1966: 154-165. |
2 | Ekman P, Friesen W V. Nonverbal leakage and clues to deception[J]. Psychiatry-interpersonal & Biological Processes, 1969, 32(1): 88-106. |
3 | Peng M, Wu Z, Zhang Z, et al. From macro to micro expression recognition: deep learning on small datasets using transfer learning[C]∥The 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi'an,China,2018: 657-661. |
4 | Yao L, Xiao X, Cao R, et al. Three stream 3d CNN with SE block for micro-expression recognition[C]∥ International Conference on Computer Engineering and Application, Guangzhou, China, 2020: 439-443. |
5 | 贲晛烨, 杨明强, 张鹏, 等. 微表情自动识别综述[J].计算机辅助设计与图形学学报, 2014, 26(9): 1385-1395. |
Xian-ye Ben, Yang Ming-qiang, Zhang Peng, et al. Survey on automatic micro expression recognition methods[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(9): 1385-1395. | |
6 | Yan W J, Wu Q, Liu Y J, et al. CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces[C]∥The 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 2013: 1-7. |
7 | Yan W J, Li X, Wang S J, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. Plos One, 2014, 9(1): No. e86041. |
8 | Qu F B, Wang S J, Yan W J, et al. CAS(ME)2: a database for spontaneous macro-expression and micro-expression spotting and recognition[J]. IEEE Transactions on Affective Computing, 2018, 9(4): 424-436. |
9 | Davison A K, Lansley C, Costen N, et al. SAMM: a spontaneous micro-facial movement dataset[J]. IEEE Transactions on Affective Computing, 2018, 9(1): 116-129. |
10 | Li X, Pfister T, Huang X, et al. A spontaneous micro-expression database: inducement, collection and baseline[C]∥The 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 2013: 1-6. |
11 | Pfister T, Li X B, Zhao G, et al. Recognising spontaneous facial micro-expressions[C]∥International Conference on Computer Vision, Barcelona, Spain, 2011: 1449-1456. |
12 | Zhao G Y, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928. |
13 | Huang X, Zhao G, Hong X, et al. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns[J]. Neurocomputing, 2016, 175(A): 564-578. |
14 | Wang Y, See J, Phan W, et al. LBP with six intersection points: reducing redundant information in lbp-top for micro-expression recognition[C]∥The 12th Asian Conference on Computer Vision, Singapore, 2014: 525-537. |
15 | Ben X, Zhang P, Yan R, et al. Gait recognition and micro-expression recognition based on maximum margin projection with tensor representation[J]. Neural Computing and Applications, 2016, 27(8): 2629-2646. |
16 | Xu F, Zhang J, Wang J Z. Microexpression identification and categorization using a facial dynamics map[J]. IEEE Transactions on Affective Computing, 2017: 254-267. |
17 | Liu Y J, Zhang J K, Yan W J, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2016, 7(4): 299-310. |
18 | Fu J L, Zheng H L, Mei T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017: 4476-4484. |
19 | Lin T Y, Roychowdhury A, Maji S. Bilinear CNN models for fine-grained visual recognition[C]∥IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1449-1457. |
20 | Byeon Y H, Kwak K C. Facial expression recognition using 3d convolutional neural network [J]. International Journal of Advanced Computer Science and Applications, 2014, 5(12): 107-112. |
21 | Kim D H, Baddar W J, Ro Y M. Micro-Expression recognition with expression-stateconstrained spatio-temporal feature representations[C]∥Proceedings of the 24th ACM International Conference on Multimedia. New York, United States, 2016: 382-386. |
22 | Peng M, Wang C, Chen T, et al. Dual temporal scale convolutional neural network for micro-expression recognition[J]. Frontiers in Psychology, 2017: 1745-1757. |
23 | Patel D, Hong X P, Zhao G Y. Selective deep features for micro-expression recognition[C]∥The 23rd International Conference on Pattern Recognition, Cancun, Mexico, 2017: 2258-2263. |
24 | Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]∥ International Conference on Learning Representations, San Diego USA, 2015. |
25 | Xiao T, Xu Y, Yang K, et al. The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]∥IEEE Conference on Computer Vision and Pattern, Recognition, Boston, USA, 2015: 842-850. |
26 | Wang F, Jiang M, Qian C, et al. Residual attention network for image classification[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6450-6458. |
27 | Sharma S, Kiros R, Salakhutdinov R. Action recognition using visual attention[C]∥Neural Information Processing Systems (NIPS) Time Series Workshop, London,UK,2017: 1-11. |
28 | Stollenga M, Masci J, Gomez F, et al. Deep networks with internal selective attention through feedback connections[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, Manno-Lugano, Switzerland, 2014: 3545-3553. |
29 | Paul Ekman, Friesen Wallace V. Facial Action Coding System:a Technique for the Measurement of Facial Movement[M]. Palo Alto: Consulting Psychologists Press, 1978. |
30 | Deng W H, Hu J N, Guo J. Compressive binary patterns: designing a robust binary face descriptor with random-field eigenfilters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(3): 758-767. |
31 | King D E. Dlib-ml: a machine learning toolkit[J]. Machine Learning Research, 2009, 10: 1755-1758. |
32 | Zhou Z H, Zhao G Y, Guo Y M, et al. An image-based visual speech animation system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(10): 1420-1432. |
33 | Li X, Pfister T, Huang X, et al. A Spontaneous micro-expression database: inducement, collection and baseline[C]∥The 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 2013. |
34 | See J, Yap M H, Li J, et al. MEGC 2019 – the second facial micro-expressions grand challenge[C]∥The 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, 2019. |
35 | Wang Y, See J, Phan W, et al. LBP with Six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition[C]∥ACCV, Singapore,2014: 525-537. |
36 | Chan C H, Goswami B, Kittler J, et al. Local ordinal contrast pattern histograms for spatiotemporal, lip-based speaker authentication[C]∥The 4th IEEE International Conference on Biometrics: Theory, Applications and Systems, Washington, DC, USA, 2012: 602-612. |
37 | Chaudhry R, Ravichandran A, Hager G, et al. Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1932-1939. |
38 | Xu F, Zhang J P, Wang J Z. Microexpression identification and categorization using a facial dynamics map[J]. IEEE Transactions on Affective Computing, 2017, 8(2): 254-267. |
39 | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]∥Computer Vision and Pattern Recognition,Singapore,2015: 1-14. |
40 | He K H, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
41 | Zhao G Y, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(6): 915-928. |
42 | Liong S T, See J, Wong K S, et al. Less is more: micro-expression recognition from video using apex frame[J]. Signal Processing: Image Communication, 2018, 62: 82-92. |
43 | Zhou L, Mao Q, Xue L. Dual-inception network for cross-database micro-expression recognition[C]∥The 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, 2019. |
44 | Peng M, Wang C, Bi T, et al. A novel apex-time network for cross-dataset micro-expression recognition[C]∥The 8th International Conference on Affective Computing and Intelligent Interaction, Cambridge, UK, 2019. |
45 | Quang N V, Chun J, Tokuyama T. CapsuleNet for Micro-Expression Recognition[C]∥The 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, 2019. |
46 | Liong S T, Gan Y S, See J, et al. Shallow triple stream three-dimensional CNN (STSTNET) for micro-expression recognition[C]∥The 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France, 2019. |
47 | Wang C Y, Peng M, Bi T, et al. Micro-attention for micro-expression recognition[J]. Neurocomputing, 2020, 410: 354-362. |
[1] | 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896. |
[2] | 魏晓辉,苗艳微,王兴旺. Rhombus sketch:自适应和准确的流数据sketch[J]. 吉林大学学报(工学版), 2022, 52(4): 874-884. |
[3] | 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890. |
[4] | 王学智,李清亮,李文辉. 融合迁移学习的土壤湿度预测时空模型[J]. 吉林大学学报(工学版), 2022, 52(3): 675-683. |
[5] | 康苏明,张叶娥. 基于Hadoop的跨社交网络局部时序链路预测算法[J]. 吉林大学学报(工学版), 2022, 52(3): 626-632. |
[6] | 王雪,李占山,吕颖达. 基于多尺度感知和语义适配的医学图像分割算法[J]. 吉林大学学报(工学版), 2022, 52(3): 640-647. |
[7] | 欧阳继红,郭泽琪,刘思光. 糖尿病视网膜病变分期双分支混合注意力决策网络[J]. 吉林大学学报(工学版), 2022, 52(3): 648-656. |
[8] | 毛琳,任凤至,杨大伟,张汝波. 双向特征金字塔全景分割网络[J]. 吉林大学学报(工学版), 2022, 52(3): 657-665. |
[9] | 曲优,李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(1): 162-173. |
[10] | 赵宏伟,霍东升,王洁,李晓宁. 基于显著性检测的害虫图像分类[J]. 吉林大学学报(工学版), 2021, 51(6): 2174-2181. |
[11] | 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构[J]. 吉林大学学报(工学版), 2021, 51(6): 2246-2252. |
[12] | 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173. |
[13] | 孙东明,胡亮,邢永恒,王峰. 基于文本融合的物联网触发动作编程模式服务推荐方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2182-2189. |
[14] | 林俊聪,雷钧,陈萌,郭诗辉,高星,廖明宏. 基于电影视觉特性的动态多目标实时相机规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2154-2163. |
[15] | 任丽莉,王志军,闫冬梅. 结合黏菌觅食行为的改进多元宇宙算法[J]. 吉林大学学报(工学版), 2021, 51(6): 2190-2197. |
|