吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (3): 726-734.doi: 10.13229/j.cnki.jdxbgxb20220311

• 通信与控制工程 • 上一篇    

跟随式车辆队列高效协同弦稳定预测控制

何德峰(),周丹,罗捷   

  1. 浙江工业大学 信息工程学院,杭州 310023
  • 收稿日期:2022-03-25 出版日期:2023-03-01 发布日期:2023-03-29
  • 作者简介:何德峰(1979-),男,教授,博士. 研究方向:模型预测控制理论与应用. E-mail:hdfzj@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(62173303);浙江省属高校基本科研业务费项目(RF-C2020003)

Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability

De-feng HE(),Dan ZHOU,Jie LUO   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2022-03-25 Online:2023-03-01 Published:2023-03-29

摘要:

针对前后跟随式通信拓扑的约束车辆队列弦稳定协同控制问题,提出一种分布式参数化模型预测队列控制算法。首先,建立车辆队列的纵向动力学模型,通过反馈线性化将其转化为线性状态空间模型。然后,利用邻域内车辆的预测轨迹信息构造局部优化问题,建立车辆队列局部控制器。为降低求解该局部最优控制问题的计算量,将预测时域内的控制输入增量参数化为阶梯式结构。在此基础上,设计模型预测队列控制器迭代计算算法,满足系统输入输出约束和弦稳定约束条件。进一步,应用Lyapunov稳定性定理和Moore-Penrose广义逆矩阵,获得车辆队列渐近稳定性充分条件,并分析系统跟踪性能。最后,通过与常规队列控制算法的仿真对比实验,验证所提出控制策略的高效性。

关键词: 控制理论与控制工程, 模型预测控制, 车辆队列, 分布式控制, 阶梯式策略, 弦稳定性

Abstract:

To solve the string stability problem of cooperative control of constrained vehicle platoon with predecessor-following topologies, the distributed parameterized model predictive platooning control algorithm was proposed. Firstly, the longitudinal kinematic model of vehicle platoons is established, which then is transformed into a linear state space model via feedback linearization. Secondly, the local controllers of the vehicle platoon are determined by solving the local optimization problems of vehicles constructed using the predictive trajectory information of neighborhood vehicles. To reduce the computational demand of solving the local optimal control problem, the incremental control input over the prediction horizon is parameterized as the form of the stair structure. Then an iterative algorithm of model predictive platooning controller is designed to satisfy the constraints of input/output and string ability. Furthermore, by using Lyapunov stability theorem and Moore-Penrose inverse matrix theory, the sufficient conditions are established to ensure asymptotic stability of the vehicle platoon as well as the analysis of the tracking performance. Finally, the effectiveness of the proposed control strategy is verified by comparison simulation with conventional platooning control algorithm.

Key words: control theory and control engineering, model predictive control, vehicle platoons, distributed control, stair-like strategy, string stability

中图分类号: 

  • TP273

图1

无约束条件下各车状态变化曲线"

图2

迭代算法下各车状态变化曲线"

图3

常规算法下的各车状态变化曲线"

表1

算法平均单步计算时间 (ms)"

算法p/h
51020
常规46.4548.6859.62
本文1.191.421.64
1 Kamal M, Mukai M, Murata J, et al. Model predictive control of vehicles on urban roads for improved fuel economy[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 831-841.
2 Maiti S, Winter S, Kulik L. A conceptualization of vehicle platoons and platoon operations[J]. Transportation Research, Part C, Emerging Technologie, 2017, 80: 1-19.
3 Guo G, Wang Q. Fuel-efficient en route speed planning and tracking control of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3091-3103.
4 Santini S, Salvi A, Bernardo M D. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 102-112.
5 Wang L, Yin G. Control of vehicle platoons for highway safety and efficient utility: Consensus with communications and vehicle dynamics[J]. Journal of Systems Science and Complexity, 2014, 27(4): 605-631.
6 Li H, Shi Y. Distributed receding horizon control of large-scale nonlinear systems: handling communication delays and disturbances[J]. Automatica, 2014, 50(4): 1264-1271.
7 Dunbar W, Murray R. Distributed receding horizon control for multi-vehicle formation stabilization[J]. Automatica, 2006, 42(4): 549-558.
8 Dai L, Cao Q, Xia Y. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance[J]. Journal of the Franklin Institute, 2017, 354(4): 2068-2085.
9 Zheng Y, Li S, Li K, et al. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 899-910.
10 Naus G, Ploeg J. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279.
11 Dunbar W, Cave D. Distributed receding horizon control of vehicle platoons: stability and string stability[J]. IEEE Transactions on Automatic Control, 2012, 57(3): 620 - 633.
12 He D, Qiu T, Luo R. Fuel efficiency-oriented platooning control of connected nonlinear vehicles: a distributed economic MPC approach[J]. Asian Journal of Control, 2020, 22(4): 1628-1638.
13 Ploeg J, Serrarens A, He G. Connect drive: design and evaluation of cooperative adaptive cruise control for congestion reduction[J]. Journal of Modern Transportation, 2011, 19(3): 207-213.
14 Chen Y, Lu C, Chu W. A cooperative driving strategy based on velocity prediction for connected vehicles with robust path-following control[J]. IEEE Internet of Things Journal, 2020, 7(5): 3822-3832.
15 Navas F, Milanes V, Flores C, et al. Multi-model adaptive control for CACC applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1206-1216.
16 Wang Y, Boyd S. Fast model predictive control using online optimization[J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 267-278.
17 He D, Shi Y, Song X. Weight-free multi-objective predictive cruise control of autonomous vehicles in integrated perturbation analysis and sequential quadratic programming optimization framework[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(9): No.091015.
18 曾德良, 高耀岿, 胡勇,等. 基于阶梯式广义预测控制的汽包炉机组协调系统优化控制[J]. 中国电机工程学报, 2019, 39(16): 4819-4826.
Zeng De-liang, Gao Yao-kui, Hu Yong, et al. Optimization control for the coordinated system of an ultra-supercritical unit based on stair-like predictive control algorithm[J]. Proceedings of the CSEE, 2019, 39(16): 4819-4826.
19 何德峰, 鲍荣, 郑凯华,等. 快速增量约束预测控制及在GLCC液位控制中的应用[J]. 化工学报, 2013, 64(3): 993-999.
He De-feng, Bao Rong, Zheng Kai-hua, et al. Fast incremental constraint predictive control and application in GLCC liquid level control system[J]. Journal of Chemical Industry, 2013, 64(3): 993-999.
20 Zhao C, Duan X, Cai L, et al. Vehicle platooning with non-ideal communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 18-32.
21 俞立. 鲁棒控制-线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2003.
[1] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
[2] 郭洪艳,于文雅,刘俊,戴启坤. 复杂场景智能车辆车道与速度一体化滚动优化决策[J]. 吉林大学学报(工学版), 2023, 53(3): 693-703.
[3] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652.
[4] 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043.
[5] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[6] 李文航,倪涛,赵丁选,张泮虹,师小波. 基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2816-2826.
[7] 彭浩楠,唐明环,查奇文,王伟忠,王伟达,项昌乐,刘玉龙. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2852-2863.
[8] 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815.
[9] 冯建鑫,王强,王雅雷,胥彪. 基于改进量子遗传算法的超声电机模糊PID控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1990-1996.
[10] 王宏志,王婷婷,胡黄水,鲁晓帆. 基于Q学习优化BP神经网络的BLDCM转速PID控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2280-2286.
[11] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[12] 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718.
[13] 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652.
[14] 邓丽飞, 石要武, 朱兰香, 于丁力. SI发动机闭环系统故障检测[J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[15] 唐晓峰, 高峰, 徐国艳, 丁能根, 蔡尧, 刘建行. 基于智能空间-车框架理论的车辆行驶运动学状态的预测[J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!