吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (3): 726-734.doi: 10.13229/j.cnki.jdxbgxb20220311
• 通信与控制工程 • 上一篇
摘要:
针对前后跟随式通信拓扑的约束车辆队列弦稳定协同控制问题,提出一种分布式参数化模型预测队列控制算法。首先,建立车辆队列的纵向动力学模型,通过反馈线性化将其转化为线性状态空间模型。然后,利用邻域内车辆的预测轨迹信息构造局部优化问题,建立车辆队列局部控制器。为降低求解该局部最优控制问题的计算量,将预测时域内的控制输入增量参数化为阶梯式结构。在此基础上,设计模型预测队列控制器迭代计算算法,满足系统输入输出约束和弦稳定约束条件。进一步,应用Lyapunov稳定性定理和Moore-Penrose广义逆矩阵,获得车辆队列渐近稳定性充分条件,并分析系统跟踪性能。最后,通过与常规队列控制算法的仿真对比实验,验证所提出控制策略的高效性。
中图分类号:
1 | Kamal M, Mukai M, Murata J, et al. Model predictive control of vehicles on urban roads for improved fuel economy[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 831-841. |
2 | Maiti S, Winter S, Kulik L. A conceptualization of vehicle platoons and platoon operations[J]. Transportation Research, Part C, Emerging Technologie, 2017, 80: 1-19. |
3 | Guo G, Wang Q. Fuel-efficient en route speed planning and tracking control of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3091-3103. |
4 | Santini S, Salvi A, Bernardo M D. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 102-112. |
5 | Wang L, Yin G. Control of vehicle platoons for highway safety and efficient utility: Consensus with communications and vehicle dynamics[J]. Journal of Systems Science and Complexity, 2014, 27(4): 605-631. |
6 | Li H, Shi Y. Distributed receding horizon control of large-scale nonlinear systems: handling communication delays and disturbances[J]. Automatica, 2014, 50(4): 1264-1271. |
7 | Dunbar W, Murray R. Distributed receding horizon control for multi-vehicle formation stabilization[J]. Automatica, 2006, 42(4): 549-558. |
8 | Dai L, Cao Q, Xia Y. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance[J]. Journal of the Franklin Institute, 2017, 354(4): 2068-2085. |
9 | Zheng Y, Li S, Li K, et al. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 899-910. |
10 | Naus G, Ploeg J. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. |
11 | Dunbar W, Cave D. Distributed receding horizon control of vehicle platoons: stability and string stability[J]. IEEE Transactions on Automatic Control, 2012, 57(3): 620 - 633. |
12 | He D, Qiu T, Luo R. Fuel efficiency-oriented platooning control of connected nonlinear vehicles: a distributed economic MPC approach[J]. Asian Journal of Control, 2020, 22(4): 1628-1638. |
13 | Ploeg J, Serrarens A, He G. Connect drive: design and evaluation of cooperative adaptive cruise control for congestion reduction[J]. Journal of Modern Transportation, 2011, 19(3): 207-213. |
14 | Chen Y, Lu C, Chu W. A cooperative driving strategy based on velocity prediction for connected vehicles with robust path-following control[J]. IEEE Internet of Things Journal, 2020, 7(5): 3822-3832. |
15 | Navas F, Milanes V, Flores C, et al. Multi-model adaptive control for CACC applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1206-1216. |
16 | Wang Y, Boyd S. Fast model predictive control using online optimization[J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 267-278. |
17 | He D, Shi Y, Song X. Weight-free multi-objective predictive cruise control of autonomous vehicles in integrated perturbation analysis and sequential quadratic programming optimization framework[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(9): No.091015. |
18 | 曾德良, 高耀岿, 胡勇,等. 基于阶梯式广义预测控制的汽包炉机组协调系统优化控制[J]. 中国电机工程学报, 2019, 39(16): 4819-4826. |
Zeng De-liang, Gao Yao-kui, Hu Yong, et al. Optimization control for the coordinated system of an ultra-supercritical unit based on stair-like predictive control algorithm[J]. Proceedings of the CSEE, 2019, 39(16): 4819-4826. | |
19 | 何德峰, 鲍荣, 郑凯华,等. 快速增量约束预测控制及在GLCC液位控制中的应用[J]. 化工学报, 2013, 64(3): 993-999. |
He De-feng, Bao Rong, Zheng Kai-hua, et al. Fast incremental constraint predictive control and application in GLCC liquid level control system[J]. Journal of Chemical Industry, 2013, 64(3): 993-999. | |
20 | Zhao C, Duan X, Cai L, et al. Vehicle platooning with non-ideal communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 18-32. |
21 | 俞立. 鲁棒控制-线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2003. |
[1] | 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725. |
[2] | 郭洪艳,于文雅,刘俊,戴启坤. 复杂场景智能车辆车道与速度一体化滚动优化决策[J]. 吉林大学学报(工学版), 2023, 53(3): 693-703. |
[3] | 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652. |
[4] | 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043. |
[5] | 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323. |
[6] | 李文航,倪涛,赵丁选,张泮虹,师小波. 基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2816-2826. |
[7] | 彭浩楠,唐明环,查奇文,王伟忠,王伟达,项昌乐,刘玉龙. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2852-2863. |
[8] | 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815. |
[9] | 冯建鑫,王强,王雅雷,胥彪. 基于改进量子遗传算法的超声电机模糊PID控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1990-1996. |
[10] | 王宏志,王婷婷,胡黄水,鲁晓帆. 基于Q学习优化BP神经网络的BLDCM转速PID控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2280-2286. |
[11] | 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922. |
[12] | 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718. |
[13] | 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652. |
[14] | 邓丽飞, 石要武, 朱兰香, 于丁力. SI发动机闭环系统故障检测[J]. 吉林大学学报(工学版), 2017, 47(2): 577-582. |
[15] | 唐晓峰, 高峰, 徐国艳, 丁能根, 蔡尧, 刘建行. 基于智能空间-车框架理论的车辆行驶运动学状态的预测[J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401. |
|