吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1644-1652.doi: 10.13229/j.cnki.jdxbgxb20180421

• • 上一篇    下一篇

含电动汽车的微电网模型预测负荷频率控制

马苗苗1,2(),潘军军1,刘向杰1,2   

  1. 1. 华北电力大学 控制与计算机工程学院,北京 102206
    2. 华北电力大学 新能源电力系统国家重点实验室,北京 102206
  • 收稿日期:2018-05-02 出版日期:2019-09-01 发布日期:2019-09-11
  • 作者简介:马苗苗(1982-),女,副教授,博士.研究方向:模型预测控制,新能源电力系统优化与控制.E-mail:mamm@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61873091);中央高校基本科研业务费专项基金项目(2017ZZD004)

Model predictive load frequency control of microgrid with electrical vehicles

Miao-miao MA1,2(),Jun-jun PAN1,Xiang-jie LIU1,2   

  1. 1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    2. State Key Laboratory of Alternate Electric Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
  • Received:2018-05-02 Online:2019-09-01 Published:2019-09-11

摘要:

对含电动汽车的孤岛微电网负荷频率控制问题进行了研究,分析了柴油发电机和电动汽车的调频特性,并基于电动汽车调频特性利用模型预测控制方法实现了对含电动汽车的微电网系统的负荷频率控制。仿真结果表明:在系统受到负荷阶跃波动时,本文提出的模型预测控制器能合理地分配各系统的输出,快速消除频率波动,在为用户提供高质量电力的同时也延长了设备使用寿命。

关键词: 自动控制技术, 模型预测控制, 负荷频率控制, 微电网, 电动汽车

Abstract:

With the development of the Vehicle-to-Microgrid (V2M) technique, Electrical Vehicles (EVs), which are considered as the controllable loads and also as the distributed energy storage units, are used to alleviate the frequency fluctuation of microgrid caused by the intermittent new energy. This paper studies the load frequency control problem of microgrid with EVs. Frequency regulation characteristics of the diesel generator and EVs are analyzed, respectively. Then, the model predictive control strategy is proposed for the load frequency control of microgrid with EVs. The simulation results show that when the system is subjected to a step load fluctuation, the proposed model predictive control strategy can reasonably allocate the output of each system, and quickly eliminate the frequency fluctuation. Moreover, it also extends the life of the generators while providing high-quality power to customers.

Key words: automatic control technology, model predictive control, load frequency control, microgrid, electrical vehicle

中图分类号: 

  • TP273

图1

含电动汽车的微电网系统并网控制原理图"

图2

含电动汽车的微电网负荷频率控制原理图"

图3

等效电动汽车模型"

图4

柴油发电机组传递函数模型"

图5

MPC算法流程图"

表1

含电动汽车的微电网系统参数"

微电网系统 参 数 数 值
DG

T g /s

T d /s

R/(Hz·pu-1·MW)

δ d g /(pu·MW·s-1)

μ d g /(pu·MW)

0.1

8

2.5

0.0018

0.06

EV1

T e 1 /s

δ e 1 /(pu·MW·s-1)

μ e 1 /(pu·WM)

E m a x /(pu·MW·h)

E m i n /(pu MW·h)

1

0.02

0.025

0.95

0.80

EV2

T e 2 /s

δ e 2 /(pu·MW·s-1)

μ e 2 /(pu·MW)

E m a x /(pu·MW·h)

E m i n /(pu·MW·h)

1

0.02

0.015

0.90

0.80

图6

含电动汽车的微电网系统负荷阶跃响应曲线"

图7

含电动汽车的微电网系统鲁棒性分析响应曲线"

1 徐迅, 高蓉, 管必萍, 等 . 微电网规划研究综述[J]. 电网与清洁能源, 2012, 28(7): 25-30.
Xu Xun , Gao Rong , Guan Bi-ping , et al . Overview of research on planning of micro-grid[J]. Power System & Clean Energy, 2012, 28(7): 25-30.
2 董冰, 田彦涛, 周长久 . 基于模糊逻辑的纯电动汽车能量管理优化控制[J]. 吉林大学学报: 工学版, 2015,45(2): 516-525.
Dong Bing , Tian Yan-tao , Zhou Chang-jiu . Fuzzy logic-based optimal control method for energy management of pure electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2): 516-525.
3 Winkler T , Komarnicki P , Mueller G , et al . Electric vehicle charging stations in Magdeburg,[C] ∥2009 IEEE Vehicle Power and Propulsion Conference IEEE, 2009: 60-65.
4 Atia R , Yamada N . More accurate sizing of renewable energy sources under high levels of electric vehicle integration[J]. Renewable Energy, 2015, 81: 918-925.
5 Jayawarna N , Jenkins N , Barnes M , et al . Safety analysis of a microgrid,[C] ∥2005 IEEE International Conference on Future Power Systems, Amsterdam Netherlands, 2005: 261-278.
6 Kayalvizhi S , Kumar D M V . Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control[J]. IEEE Access, 2017, 5: 16241-16251.
7 Khooban M H , Niknam T , Blaabjerg F , et al . A new load frequency control strategy for micro-grids with considering electrical vehicles[J]. Electric Power Systems Research, 2017, 143: 585-598.
8 Singh M , Kumar P , Kar I . Implementation of vehicle to grid infrastructure using fuzzy logic controller[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 565-577.
9 Datta M , Senjyu T . Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system[J]. IEEE Transactions on Smart Grid, 2013, 4(1): 479-488.
10 Mahmoud M S , Alyazidi N M , Abouheaf M I . Adaptive intelligent techniques for microgrid control systems: a survey[J]. Electrical Power & Energy Systems, 2017, 90: 292-305.
11 Al-Barazanchi S A M , Vural A M . Modeling and intelligent control of a stand-alone PV-wind-diesel-battery hybrid system[C]∥2015 IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies, Kumaracoil, India , 2016: 423-430.
12 Khooban M H , Niknam T , Blaabjerg F , et al . A robust adaptive load frequency control for micro-grids[J]. Isa Transactions, 2016, 65: 220-229.
13 Yang J , Zeng Z , Tang Y , et al . Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory[J]. Energies, 2015, 8(3): 2145-2164.
14 Zarogiannis A , Marinelli M , Træholt C , et al . A dynamic behaviour analysis on the frequency control capability of electric vehicles,[C]∥2014 49th International Universities Power Engineering Conference, Cluj-Napoca Romania, 2014: 10.1109/UPEC.2014.6934763.
15 何晨颖, 耿天翔, 许晓慧, 等 . 利用电动汽车可调度容量辅助电网调频研究[J]. 电力系统保护与控制, 2015, 43(22): 134-140.
He Chen-ying , Geng Tian-xiang , Xu Xiao-hui , et al . Research on grid frequency regulation using schedulable capacity of electric vehicles[J]. Power System Protection & Control, 2015, 43(22): 134-140.
16 Liu X J , Niu L X , Liu J Z . Nonlinear multivariable supervisory predictive control[C]∥2009 American Control Conference,Hyatt Regency Riverfront,St. Louis, MO, USA, 2009: 2779-2784.
17 Cominesi S R , Farina M , Giulioni L , et al . Two-layer predictive control of a micro-grid including stochastic energy sources[C]∥2015 American Control Conference, Chicago, IL, USA , 2015: 918-923.
18 Sagar P S V , Swarup K S . Load frequency control in isolated micro-grids using centralized model predictive control[C]∥2016 IEEE International Conference on Power Electronics, Drives and Energy Systems, Trivandrum, India , 2016: 1-6.
19 Awad B , Ekanayake J , Jenkins N . Intelligent load control for frequency regulation in microgrids[J]. Intelligent Automation & Soft Computing, 2010, 16(2): 303-318.
20 Yang J , He L , Fu S . An improved PSO-based charging strategy of electric vehicles in electrical distribution grid[J]. Applied Energy, 2014, 128(3): 82-92.
21 许芳, 靳伟伟, 陈虹, 等 . 一种模型预测控制器FPGA硬件实现[J]. 吉林大学学报: 工学版, 2014, 44(4): 1042-1050.
Xu Fang , Jin Wei-wei , Chen Hong , et al . Hardware implementation method for model predictive control on a FPGA chip[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 1042-1050.
[1] 于树友,谭雷,王伍洋,陈虹. 基于三步法的汽车主动四轮转向控制[J]. 吉林大学学报(工学版), 2019, 49(3): 934-942.
[2] 温海营,任翔,徐卫良,丛明,秦文龙,胡书海. 咀嚼机器人颞下颌关节仿生设计及试验测试[J]. 吉林大学学报(工学版), 2019, 49(3): 943-952.
[3] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[4] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[5] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[6] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[7] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[8] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[9] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[10] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[11] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[12] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[13] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[14] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[15] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!