吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2806-2815.doi: 10.13229/j.cnki.jdxbgxb20210479

• 车辆工程·机械工程 • 上一篇    下一篇

面向刚柔耦合定位平台的模型预测控制算法

杨志军1(),高忠义1,王丽君2,黄观新1(),危宇泰1   

  1. 1.广东工业大学 省部共建精密电子制造技术与装备国家重点实验室,广州 510006
    2.北京科技大学 工业过程知识自动化教育部重点实验室,北京 100083
  • 收稿日期:2021-05-31 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 黄观新 E-mail:yangzj@gdut.edu.cn;guanxinhuang@gdut.edu.cn
  • 作者简介:杨志军(1977-),男,教授,博士. 研究方向:机电系统性能定制设计. E-mail:yangzj@gdut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51875108);中央高校基本科研业务费专项资金项目(FRF-BD-19-002A)

Model predictive control algorithm for rigid⁃flexible coupling positioning stage

Zhi-jun YANG1(),Zhong-yi GAO1,Li-jun WANG2,Guan-xin HUANG1(),Yu-tai WEI1   

  1. 1.State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment,Guangdong University of Technology,Guangzhou 510006,China
    2.Key Laboratory of Industrial Process Knowledge Automation,Ministry of Education,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2021-05-31 Online:2022-12-01 Published:2022-12-08
  • Contact: Guan-xin HUANG E-mail:yangzj@gdut.edu.cn;guanxinhuang@gdut.edu.cn

摘要:

针对刚柔耦合定位平台(RFCS)在运动阶段和定位阶段模型不同的特点,提出了一种扩张状态观测器辅助的模型预测控制(ESO-MPC)算法。该算法采用时域离散的差分方程对RFCS的动力学响应进行预测,并且在时域离散时引入了可调参数应对实验模型的不确定因素。通过扩张状态观测器(ESO)获取反馈信息,对RFCS的位置、速度及柔性铰链的弹性力和阻尼力进行实时观测。通过RFCS的25组点位运动实验和负载实验,对比了传统PID、前馈PID、LADRC与ESO-MPC算法的性能。实验结果表明,4种控制方案都能达到±0.1 μm的稳态误差,而ESO-MPC算法的整定时间最短,并且通过负载实验验证了ESO-MPC算法的鲁棒性。

关键词: 机械电子工程, 刚柔耦合定位平台, 模型预测控制, 扩张状态观测器

Abstract:

For the feature that the RFCS has different models in motion and positioning stage, an extended state observer assisted model predictive control (ESO-MPC) method was proposed. The time-domain discrete difference equation was used to predict the dynamic response of RFCS, and an adjustable parameter during the time-domain discretization process was introduced to deal with uncertain factors of the experimental model. The feedback information was obtained through the Expanded State Observer (ESO), which can observe the position and speed of the RFCS as well as the spring and damping forces of the flexible hinge in real time. The performance of traditional PID, feedforward PID, LADRC and ESO-MPC was compared by 25 sets of RFCS point-to-point experiments and load experiments. The experimental results show that the four control schemes can achieve a steady-state error of ±0.1 μm, and ESO-MPC has the smallest setting time and the robustness of ESO-MPC is verified by load experiment.

Key words: mechatronic engineering, rigid-flexible coupling positioning stage, model predictive control, extended state observer

中图分类号: 

  • TP273

图1

RFCS结构图"

图2

RFCS动力学模型"

图3

ESO-MPC框架"

图4

辨识输出信号"

图5

系统的频域特性曲线"

图6

实验装置图"

图7

实验装置连接图"

图8

S型曲线运动规划"

表1

S型曲线运动规划参数"

参数定义
Jmax/(m·s-3最大急动度126.45
Amax/(m·s-2最大加速度8.11
Vmax/(m·s-1最大速度0.78
Q/m行程0.15

表2

控制参数"

PID前馈PIDLADRCESO-MPC
kP=3.2×104kP=3.2×104ωc=800α=900
kI=2.0×106kI=2.8×106ωo=1000m=1.4
kD=16kD=17ωo=1000

表3

不同控制算法整定时间对比"

控制算法最小值/ms最大值/ms平均值/ms众数/ms
PID30.644.534.3133.0
前馈PID25.935.831.5031.5
LADRC5.344.627.6335.8
ESO-MPC0.429.514.2329.4

图9

位移曲线对比"

图10

误差曲线对比"

表4

ESO-MPC控制参数"

负载质量/kgαωcm
190010002.4
290010003.4
390010004.4
490010005.4

图11

负载实验图"

图12

负载响应曲线"

表5

不同负载下整定时间对比"

负载质量/kg最小值/ms最大值/ms平均值/ms标准差
17.318.610.280.003 591 0
28.522.215.760.005 224 0
320.522.921.800.000 726 0
430.233.031.520.000 796 9
1 刘岗岗,王旭亮,胡锐,等. 面向多品种、小批量微电子制造过程的SPC技术应用研究[J]. 电子质量, 2020(1): 5-8.
Liu Gang-gang, Wang Xu-liang, Hu Rui, et al. SPC technology application research for multi-variety, small-batch microelectronics manufacturing process[J]. Electronic Quality, 2020(1): 5-8.
2 Qin W, Li Y. Foreword: special section on "the reliability of advanced microelectronic packaging—part II: structure-property relationships"[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2020, 10(10): 1587-1588.
3 夏旭晖. 微电子封装技术的优势与应用[J]. 无线互联科技, 2021, 18(4): 102-103.
Xia Xu-hui. The advantages and applications of microelectronic packaging technology[J]. Wireless Internet Technology, 2021, 18(4): 102-103.
4 廖志伟. 微电子封装技术探讨[J]. 计算机产品与流通, 2020(2): 150.
Liao Zhi-wei. Discussion on microelectronics packaging technology[J]. Computer Products and Circulation, 2020(2): 150.
5 白有盾,陈新,杨志军. 刚柔分级并联驱动宏微复合运动平台设计[J]. 中国科学: 技术科学, 2019, 49(6): 669-680.
Bai You-dun, Chen Xin, Yang Zhi-jun. Design of rigid-flexible hierarchical parallel drive macro-micro composite motion platform[J]. Science in China: Technical Sciences, 2019, 49(6): 669-680.
6 Chen X, Bai Y, Yang Z, et al. A precision-positioning method for a high-acceleration low-load mechanism based on optimal spatial and temporal distribution of inertial energy[J]. Engineering, 2015, 1(3): 391-398.
7 Ruderman M, Iwasaki M. Analysis of linear feedback position control in presence of presliding friction[J]. IEEJ Journal of Industry Applications, 2016, 5(2): 61-68.
8 Sato K, Nakamoto K, Shimokohbe A. Practical control of precision positioning mechanism with friction[J]. Precision Engineering, 2004, 28(4):426-434.
9 Dong X, Okwudire C E. An experimental investigation of the effects of the compliant joint method on feedback compensation of pre-sliding/pre-rolling friction[J]. Precision Engineering, 2018, 54:81-90.
10 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002(3): 13-18.
Han Jing-qing. From PID technology to "auto-disturbance rejection control" technology[J]. Control Engineering, 2002(3): 13-18.
11 席裕庚,李德伟,林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.
Xi Yu-geng, Li De-wei, Lin Shu. Model predictive control——current situation and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236.
12 Morari M, Maeder U. Nonlinear offset-free model predictive control[J]. Automatica Oxford, 2012,48(9): 2059-2067.
13 Narimani M, Wu B, Yaramasu V, et al. Finite control-set model predictive control (FCS-MPC) of nested neutral point-clamped (NNPC) converter[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 7262-7269.
14 Guechi E H, Bouzoualegh S, Zennir Y, et al. MPC control and LQ optimal control of A two-link robot arm: a comparative study[J]. Machines, 2018, 6(3):No.37.
15 杨茹楠,何晋伟,王秀瑞. 三电平双向直流变换器的模型预测电压控制研究[J]. 电源学报, 2021, 19(2): 74-80.
Yang Ru-nan, He Jin-wei, Wang Xiu-rui. Research on model predictive voltage control of three-level bidirectional DC converter[J]. Journal of Power Supply, 2021, 19(2): 74-80.
16 Cursi F, Modugno V, Lanari L, et al. Bayesian neural network modeling and hierarchical MPC for a tendon-driven surgical robot with uncertainty minimization[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2642-2649.
17 李寿涛,王蕊,徐靖淳,等. 一种基于模型预测复合控制的车辆避碰控制方法[J]. 吉林大学学报:工学版, 2021, 51(2): 738-746.
Li Shou-tao, Wang Rui, Xu Jing-chun, et al. A vehicle collision avoidance control method based on model predictive compound control[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 738-746.
18 黄一,韩京清. 非线性连续二阶扩张状态观测器的分析与设计[J]. 科学通报, 2000(13): 1373-1379.
Huang Yi, Han Jing-qing. Analysis and design of nonlinear continuous extended second order state observer[J]. Chinese Science Bulletin, 2000(13): 1373-1379.
19 Han Jing-qing. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
20 李静,韩佐悦,杨威,等. 基于非线性模型的磁流变半主动悬架驱动系统[J]. 吉林大学学报:工学版, 2018, 48(3): 645-651.
Li Jing, Han Zuo-yue, Yang Wei, et al. Magnetorheological semi-active suspension drive system based on nonlinear model[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(3): 645-651.
21 王春阳,辛瑞昊,史红伟. 针对大滞后系统的滞后时间削弱自抗扰控制方法[J]. 吉林大学学报: 工学版, 2017, 47(4): 1231-1237.
Wang Chun-yang, Xin Rui-hao, Shi Hong-wei. The lag time weakened auto disturbance rejection control method for the large lag system[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(4): 1231-1237.
22 Yang Jun, Li Shi-hua, Yu Xing-huo. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 160-169.
23 Dinh T N, Park J, Park K S. Design and evaluation of disturbance observer algorithm for cable-driven parallel robots[J]. Microsystem Technologies, 2020, 26(1): 3377-3387.
24 Kim K S, Rew K H. Reduced order disturbance observer for discrete-time linear systems[J]. Automatica, 2013, 49(4): 968-975.
25 Tran T P, Yokokura Y, Ohishi K, et al. FPGA-based high performance bilateral control of different master-slave mechanism using highorder disturbance observer[C]∥IEEE International Conference on Mechatronics, Vicenza, Italy, 2013: No.13518547.
26 Ri S, Huang J, Tao C J, et al. A high-order disturbance observer based sliding mode velocity control of mobile wheeled inverted pendulum systems[C]∥2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016: No. 16341068.
27 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998(1): 19-23.
Han Jing-qing. Auto disturbance rejection controller and its application[J]. Control and Decision, 1998(1): 19-23.
28 黄一,薛文超,赵春哲. 自抗扰控制纵横谈[J]. 系统科学与数学, 2011, 31(9): 1111-1129.
Huang Yi, Xue Wen-chao, Zhao Chun-zhe. Discussion on active disturbance rejection control[J]. System Science and Mathematics, 2011, 31(9): 1111-1129.
29 Gao Zhi-qiang. Scaling and bandwidth-parameterization based controller tuning[J]. Proceedings of the 2003 American Control Conference: IEEE, 2003: 4989-4996.
30 Daafouz J, Riedinger P, Iung C. Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach[J]. IEEE Transactions on Automatic Control, 2002, 47(11): 1883-1887.
31 Grimm G, Messina M J, Tuna S E, et al. Model predictive control: for want of a local control Lyapunov function, all is not lost[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 546-558.
32 Singhose W, Eloundou R, Lawrence J. Command generation for flexible systems by input shaping and command smoothing[J]. Journal of Guidance Control & Dynamics, 2012, 33(6): 1697-1707.
[1] 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043.
[2] 蒋林,周玲,赵慧. 液压伺服柔驱机构设计及其刚度连续可调分析[J]. 吉林大学学报(工学版), 2022, 52(7): 1499-1508.
[3] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[4] 李文航,倪涛,赵丁选,张泮虹,师小波. 基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2816-2826.
[5] 彭浩楠,唐明环,查奇文,王伟忠,王伟达,项昌乐,刘玉龙. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2852-2863.
[6] 胡鹏,朱建新,刘昌盛,张大庆. 液压挖掘机动臂势能交互回收利用系统特性[J]. 吉林大学学报(工学版), 2022, 52(10): 2256-2264.
[7] 李学勇,赵仲秋,张春松,路长厚. 基于有限元的人体⁃机械手交互力计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1612-1619.
[8] 施昕昕,黄家才,高芳征. 基于分数阶BICO滤波器的运动控制测量噪声抑制[J]. 吉林大学学报(工学版), 2021, 51(5): 1873-1878.
[9] 于萍,穆特,朱黎辉,周子业,宋杰. 钻具输送装置非线性动力学分析及稳定性控制[J]. 吉林大学学报(工学版), 2021, 51(3): 820-830.
[10] 姜继海,赵存然,张冠隆,车明阳. 航空煤油柱塞泵摩擦副涂层材料摩擦性能[J]. 吉林大学学报(工学版), 2021, 51(1): 147-153.
[11] 胡明伟,王洪光,潘新安. 基于正交设计的协作机器人全域结构优化设计[J]. 吉林大学学报(工学版), 2021, 51(1): 370-378.
[12] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[13] 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652.
[14] 顾万里, 张森, 胡云峰, 陈虹. 有刷直流电机非线性控制系统设计[J]. 吉林大学学报(工学版), 2017, 47(3): 900-907.
[15] 唐晓峰, 高峰, 徐国艳, 丁能根, 蔡尧, 刘建行. 基于智能空间-车框架理论的车辆行驶运动学状态的预测[J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 文键,厉彦忠,周爱民,张科. 板翅式换热器入口结构的改进[J]. 吉林大学学报(工学版), 2006, 36(02): 177 -0182 .
[2] 臧传义,郭玮,胡强,黄国锋,陈孝洲,贾晓鹏. 人造石墨与亚稳态再结晶石墨形态变化[J]. 吉林大学学报(工学版), 2010, 40(01): 87 -0091 .
[3] 于向军, 王国强, 王继新, 唐小波, 胡季. 轮式装载机滚翻保护结构动态响应[J]. 吉林大学学报(工学版), 2010, 40(05): 1262 -1267 .
[4] 史文库, 郑瑞清. 主动控制电致伸缩液压悬置隔振特性仿真[J]. 吉林大学学报(工学版), 2005, 35(02): 116 -0121 .
[5] 岳建伟, 姜忻良 . 速成墙板的宏观计算模型[J]. 吉林大学学报(工学版), 2006, 36(05): 824 -0828 .
[6] 商延赓;孙大千;郎波;张显斌. 金属间化合物对Sn-Ag-Cu无铅钎料钎焊接头性能的影响[J]. 吉林大学学报(工学版), 2006, 36(06): 846 -0850 .
[7] 彭其渊,徐进,郑升宝,邵毅明,邓天民. 隧道洞口路面两种材料交替对行车的影响及交替位置优化[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[8] 张玉华,朱延河,赵杰,任宗伟. 模块化自重构机器人的设计和运动规划[J]. 吉林大学学报(工学版), 2007, 37(04): 925 -929 .
[9] 厉茂海,洪炳熔,罗荣华 . 用改进的RaoBlackwellized粒子滤波器实现
移动机器人同时定位和地图创建
[J]. 吉林大学学报(工学版), 2007, 37(02): 401 -0406 .
[10] 才辉,蔡晋辉,张光新,侯迪波,周泽魁. 基于k-mask的超连通理论及应用[J]. 吉林大学学报(工学版), 2010, 40(01): 201 -0206 .