吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2404-2409.doi: 10.13229/j.cnki.jdxbgxb.20220377

• 通信与控制工程 • 上一篇    

基于单亲遗传算法的无人驾驶汽车主动避撞方法

田国红(),代鹏杰   

  1. 辽宁工业大学 汽车与交通工程学院,辽宁 锦州 121001
  • 收稿日期:2022-04-07 出版日期:2023-08-01 发布日期:2023-08-21
  • 作者简介:田国红(1971-),女,副教授,硕士.研究方向:新能源汽车仿真与控制,汽车安全技术.E-mail:tiangh5689@163.com
  • 基金资助:
    国家自然科学基金青年基金项目(51605213)

Active collision avoidance method of driverless vehicle based on partheno genetic algorithm

Guo-hong TIAN(),Peng-jie DAI   

  1. School of Automobile and Traffic Engineering,Liaoning University of Technology,Jinzhou 121001,China
  • Received:2022-04-07 Online:2023-08-01 Published:2023-08-21

摘要:

为有效提升无人驾驶汽车的主动安全性,提出基于单亲遗传算法的无人驾驶汽车主动避撞方法。利用归一化处理方位角评估函数构建无人驾驶汽车动力学模型。根据行为轨迹预测结果提前采取预制动,并以初始点至终点路径最短为目标,引入单点基因复制策略实施遗传操作,获取无人驾驶汽车主动避撞最优解。仿真结果表明:该方法可在紧急工况下规划出可靠的转向避撞路径,车辆状态参数平稳,路径偏差小,对不同车速及转向路径均具备较强鲁棒性。

关键词: 单亲遗传算法, 无人驾驶汽车, 主动避撞, 动力学模型, 行为追踪, 力矩约束

Abstract:

To effectively improve the active safety of autonomous vehicles, a single parent genetic algorithm based active collision avoidance method for autonomous vehicles is proposed. Construct a dynamic model for autonomous vehicles using normalized azimuth evaluation functions. Based on the predicted behavior trajectory, pre braking is taken in advance, and a single point gene replication strategy is introduced to implement genetic operations with the goal of minimizing the path from the initial point to the endpoint, in order to obtain the optimal solution for autonomous vehicle active collision avoidance. The simulation results show that this method can plan a reliable turning collision avoidance path under emergency conditions, with stable vehicle state parameters, small path deviation, and strong robustness to different vehicle speeds and turning paths.

Key words: partheno genetic algorithm, driverless car, active collision avoidance, dynamic model, behavior tracking, moment constraint

中图分类号: 

  • U461.2

表1

无人驾驶汽车动力学参数"

动力学参数数值
整车质量/kg1824
转动惯量/(kg·m24219
质心至前轴间距/m1.295
质心至后轴间距/m1.689
质心高度/m0.55
车身宽度/m1.623

图1

三种方法直行避撞仿真结果对比"

图2

三种方法横摆角速率与质心侧偏角仿真结果对比"

1 黄晓明, 蒋永茂, 郑彬双, 等. 基于路表摩擦特性的无人驾驶车辆安全制动原理与方法[J]. 科学通报, 2020, 65(30): 3328-3341.
Huang Xiao-ming, Jiang Yong-mao, Zheng Bin-shuang, et al. Theory and methodology on safety braking of autonomous vehicles based on the friction characteristic of road surface[J]. Chinese Science Bulletin, 2020,65(30): 3328-3341.
2 张立铭. 大数据支持下考虑障碍避让的机器人路径规划[J]. 计算机仿真, 2021,38(1): 312-315.
Zhang Li-ming. Robot path planning considering obstacles avoidance supported by big data[J]. Computer Simulation, 2021, 38(1): 312-315.
3 Bachmann M, Morold M, David K. On the required movement recognition accuracy in cooperative VRU collision avoidance systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2020(99): 1-10.
4 王江锋, 刘雨桐, 王梦玉, 等. 车车通信环境下基于驾驶意图共享的车辆避撞预警算法[J]. 中国公路学报, 2020, 33(6): 65-76.
Wang Jiang-feng, Liu Yu-tong, Wang Meng-yu, et al. Warning algorithm of vehicle collision avoidance based on driving intention sharing in vehicle-to-vehicle environment[J]. China Journal of Highway and Transport, 2020, 33(6): 65-76.
5 赵林峰, 张丁之, 王慧然, 等. 基于改进安全距离模型的人机协同纵向避撞研究[J]. 汽车工程, 2021, 43(4): 588-600.
Zhao Lin-feng, Zhang Ding-zhi, Wang Hui-ran, et al. Study on longitudinal collision avoidance with human machine cooperation based on improved safety distance model[J]. Automotive Engineering, 2021, 43(4): 588-600.
6 Liu J, Ji J, Ren Y, et al. Path planning for vehicle active collision avoidance based on virtual flow field[J]. International Journal of Automotive Technology, 2021, 22(6): 1557-1567.
7 周兵, 万希, 吴晓建, 等. 紧急避撞工况下的路径规划与跟踪[J]. 湖南大学学报: 自然科学版, 2020,47(10): 10-18.
Zhou Bing, Wan Xi, Wu Xiao-jian, et al. Path planning and tracking in scenario of emergency collision avoidance[J]. Journal of Hunan University (Natural Sciences), 2020, 47(10): 10-18.
8 Tak S, Yoon J, Woo S, et al. Sectional information-based collision warning system using roadside unit aggregated connected-vehicle information for a cooperative intelligent transport system[J]. Journal of Advanced Transportation, 2020(5): 1-12.
9 李金城, 丁军君, 李芾, 等. 高速道岔车辆动力学指标研究与过岔计算[J]. 铁道标准设计, 2020, 64(10): 157-162.
Li Jin-cheng, Ding Jun-jun, Li Fu, et al. High-speed turnout vehicle dynamics index research and vehicle dynamics calculation[J]. Railway Standard Design, 2020, 64(10): 157-162.
10 Brik B, Ksentini A. Toward optimal MEC resource dimensioning for a vehicle collision avoidance system: a deep learning approach[J]. IEEE Network, 2021, 35(3): 74-80.
11 唐兆, 董少迪, 罗仁, 等. 人工智能算法在铁道车辆动力学仿真中的应用进展[J]. 交通运输工程学报, 2021, 21(1): 250-266.
Tang Zhao, Dong Shao-di, Luo Ren, et al. Application advances of artificial intelligence algorithms in dynamics simulation of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 250-266.
12 Wang H, Fu Z, Zhou J, et al. Cooperative collision avoidance for unmanned surface vehicles based on improved genetic algorithm[J]. Ocean Engineering, 2021, 222(15): 1-25.
13 唐敏, 王东强, 曾鑫钰. 汽车碰撞预警主动安全预测方法[J]. 计算机科学, 2020, 47(4): 318-322.
Tang Min, Wang Dong-qiang, Zeng Xin-yu. Active safety prediction method for automobile collision warning[J]. Computer Science, 2020, 47(4): 318-322.
14 彭浩楠, 唐明环, 查奇文, 等. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报: 工学版, 2022, 52(12): 2852-2863.
Peng Hao-nan, Tang Ming-huan, Zha Qi-wen, et al. Optimal trajectory planning method for two lane lane change of autonomous vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 2852-2863.
15 姚辉, 席建祥, 王成, 等. 二阶多智能体系统自抗扰编队跟踪与避撞控制[J]. 北京航空航天大学学报, 2020, 46(5): 960-977.
Yao Hui, Xi Jian-xiang, Wang Cheng, et al. Active disturbance rejection based formation tracking and collision avoidance control for second-order multi-agent system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 960-977.
16 庄伟超, 丁昊楠, 董昊轩, 等. 信号交叉口网联电动汽车自适应学习生态驾驶策略[J]. 吉林大学学报: 工学版, 2023, 53(1): 82-93.
Zhuang Wei-chao, Ding Hao-nan, Dong Hao-xuan, et al. Adaptive learning of ecological driving strategies for connected electric vehicles at signalized intersections[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(01): 82-93.
17 刘志伟, 刘建荣, 邓卫. 基于潜在类别的无人驾驶汽车选择行为[J]. 吉林大学学报: 工学版, 2021, 51(4): 1261-1268.
Liu Zhi-wei, Liu Jian-rong, Deng Wei. Selection behavior of autonomous vehicles based on potential categories[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1261-1268.
18 Rfm A, Drp B. Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network-ScienceDirect[J]. Neurocomputing, 2020, 379: 130-140.
19 葛如海, 肖轩, 洪亮, 等. 交叉路口转弯车辆对横穿行人的避撞策略[J]. 汽车技术, 2021(2): 7-11.
Ge Ru-hai, Xiao Xuan, Hong Liang, et al. Collision avoidance strategy of turning vehicles to crossing pedestrians at intersections[J]. Automobile Technology, 2021(2): 7-11.
[1] 刘志伟,刘建荣,邓卫. 基于潜在类别的无人驾驶汽车选择行为[J]. 吉林大学学报(工学版), 2021, 51(4): 1261-1268.
[2] 李洪雪,李世武,孙文财,王琳虹,杨志发. 考虑垂向⁃侧向运动的半挂列车动力学建模及分析[J]. 吉林大学学报(工学版), 2021, 51(2): 549-556.
[3] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[4] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[5] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[6] 袁朝春, 张龙飞, 陈龙, 何友国, 范兴根. 基于路面辨识的主动避撞系统制动性能[J]. 吉林大学学报(工学版), 2018, 48(2): 407-414.
[7] 王倩, 赵丁选, 赵颖, 陈娜. 舰载直升机复杂舰面上的动力学分析[J]. 吉林大学学报(工学版), 2017, 47(4): 1109-1113.
[8] 田彦涛, 王晓玉, 胡蕾蕾, 廉宇峰, 赵云, 尹诚. 电动汽车侧向换道行驶主动避撞控制算法[J]. 吉林大学学报(工学版), 2016, 46(5): 1587-1594.
[9] 宗长富, 万滢, 赵伟强, 张不扬, 韩正铁. 气压电控制动系统仿真平台及补偿控制策略开发[J]. 吉林大学学报(工学版), 2016, 46(3): 711-717.
[10] 宗长富, 聂枝根, 王化吉. 商用车简化模型参数辨识方法[J]. 吉林大学学报(工学版), 2013, 43(05): 1171-1177.
[11] 王建强, 王海鹏, 张磊. 基于电控液压制动装置的车辆主动报警/避撞系统[J]. , 2012, 42(04): 816-822.
[12] 郑宏宇, 刘海贞, 宗长富. 爆胎汽车电动助力转向系统补偿力矩算法[J]. 吉林大学学报(工学版), 2012, (03): 521-526.
[13] 许洪国, 彭涛, 刘宏飞, 许言. 半挂汽车转向稳定性反馈线性化控制[J]. 吉林大学学报(工学版), 2012, 42(02): 272-278.
[14] 郭孔辉, 郭耀华. 基于整车性能的液压减振器虚拟调校[J]. 吉林大学学报(工学版), 2012, 42(01): 1-6.
[15] 刘寒冰, 吴春利, 程永春. 不同适应度函数的遗传算法在桥梁结构传感器布设中的应用[J]. 吉林大学学报(工学版), 2012, 42(01): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!