吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1109-1113.doi: 10.13229/j.cnki.jdxbgxb201704014

• 论文 • 上一篇    下一篇

舰载直升机复杂舰面上的动力学分析

王倩, 赵丁选, 赵颖, 陈娜   

  1. 吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2016-03-03 出版日期:2017-07-20 发布日期:2017-07-20
  • 通讯作者: 赵丁选(1965-),男,教授,博士生导师.研究方向:工程机械,机械动力学,可靠性工程.E-mail:zdx@jlu.edu.cn
  • 作者简介:王倩(1989-),女,博士研究生.研究方向:工程机械动力学.E-mail:wangqianqianer@126.com
  • 基金资助:
    高等学校博士生学科点专项科研基金项目(2012061110023); 吉林大学“985工程”项目.

Dynamic analysis of carrier helicopter on complex deck

WANG Qian, ZHAO Ding-xuan, ZHAO Ying, CHEN Na   

  1. College of Mechanical Science and Engineering, Jilin University,Changchun 130022, China
  • Received:2016-03-03 Online:2017-07-20 Published:2017-07-20

摘要: 对舰载直升机着舰后的运动动力学进行了研究。首先针对海浪信号的随机不确定性,根据海浪波理论,提出了海浪信号的数学模型,然后利用海浪谱描述海浪的统计特性,运用MATLAB仿真平台仿真出不规则海浪并对其进行谱分析。最后基于拉格朗日方程,建立了着舰的机身动力学模型,对摇摆舰艇上的舰载机进行了动力学仿真并采用龙格库塔法对动力学模型进行实时解算。

关键词: 工程机械, 舰载直升机, 海浪模型, 动力学模型, 实时仿真

Abstract: The landing dynamics of the carrier helicopter on complex deck was studied. First, the random uncertainty of sea wave signal was considered, and the mathematical model of the sea wave signals was proposed according to the wave theory. The statistic characteristics of the sea wave were described by the way of sea wave spectrum. The irregular approximate progressing waves were simulated on MATLAB simulation platform, and the spectral estimation of the sea waves was conducted. Then, the landing dynamic model of the fuselage was established based on Lagrange equation. Finally, the dynamics simulation of the carrier helicopter on the complex deck was carried out and the Runge-Kutta method was used for the real-time calculation of the dynamic model.

Key words: construction machinery, carrier helicopter, sea waves, dynamics model, real-time calculation

中图分类号: 

  • TP18
[1] 赵丁选,王倩,张祝新. 基于层次分析法的可拓学理论对舰载直升机可靠性的评估[J].吉林大学学报:工学版,2016,46(5):1528-1531.
Zhao Ding-xuan, Wang Qian,Zhang Zhu-xin .Extenics theory for reliability assessment of carrier helicopter based on analytic hierarchy process[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(5):1528-1531.
[2] Yavrucuk L,Kubali E,Tarimci O,et al. A low cost flight simulatou using virtual reality tools [J]. IEEE Aerospace and Electronic Systems Magazine,2011,26(4):10-14.
[3] 栗英杰,赵丁选,李保中,等. 基于IDRA法的直升机动力学建模[J]. 华中科技大学学报:自然科学版,2014,42(1):98-102.
Li Ying-jie, Zhao Ding-xuan, Li Bao-zhong, et al. Dynamics modeling for helicopter based on IDRA approach[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition),2014,42(1):98-102.
[4] Konstant K,Carsten D. Mechanical model and control of an autonmous small sized helicopter with a stiff main rotor[C]//Proceedings of 2004 IEEE/RSJ International Conefemce on Intelliegnt Robots Systems,Tokyo,2004:2469-2474.
[5] 陈虹丽, 李爱军, 贾红宇. 海浪信号的实时仿真和谱估计[J]. 电机与控制学报,2007,11(1):93-96.Chen Hong-li, Li Ai-jun, Jia Hong-yu. Real time simulation and spectral analysis of sea wave signal[J]. Electric Machines and Control,2007,11(1):93-96.
[6] Fang M C,Luo J H,Lee M L. A nonlinear mathematical model for ship turning circle simulation in wave[J]. Journal of Ship Research,2005,49(2): 69-79.
[7] Claes Johanson. Real-time water rendering introducing the projected grid concept[D]. Sweden:Department of Computer Science, Lund University,2004.
[8] Tristan Perez,Mogens Blanke. Simulation of ship motion in seaway[R].Orsted DTU,Denmark: Technical University of Denmark,2002: 1-15.
[9] Cai G W,Chen B M,Lee T H. An overview on development of miniature unmanned rotorcraft systems[J]. Front Electr Eng China,2010,5(1):1-14.
[10] 普劳蒂 R W. 直升机性能及稳定性和操纵性[M]. 高正,译,北京:航空工业出版社,1990.
[11] Dzul A,Lozano R,Castillo P. Adaptive control for a radio-controlled helicopter in a vertical flying stand[J]. International Journal of Adaptive Control and Signal Processing,2004,18(5):473-485.
[12] Hoffmann G M,Huang H M,Waslander S L,et al. Tomlin precision flight control for a multi-vehicle quadrotor helicopter testbed[J]. Control Engineering Practice,2011,19(9):1023-1036.
[1] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[2] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[3] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[4] 王继新, 翟新婷, 毕野虹天, 李莺莺. 基于AIC-K-means的载荷分段混合分布估计[J]. 吉林大学学报(工学版), 2018, 48(4): 1092-1098.
[5] 彭贝, 高宇, 冯培恩, 邱清盈. 液压挖掘机回转启动过程节能技术[J]. 吉林大学学报(工学版), 2016, 46(6): 1912-1921.
[6] 赵丁选, 王倩, 张祝新. 基于层次分析法的可拓学理论对舰载直升机可靠性的评估[J]. 吉林大学学报(工学版), 2016, 46(5): 1528-1531.
[7] 宗长富, 万滢, 赵伟强, 张不扬, 韩正铁. 气压电控制动系统仿真平台及补偿控制策略开发[J]. 吉林大学学报(工学版), 2016, 46(3): 711-717.
[8] 傅佳宏, 俞小莉, 药凌宇, 刘震涛, 黄钰期. 工程机械独立式冷却模块流动传热仿真对比[J]. 吉林大学学报(工学版), 2016, 46(2): 451-456.
[9] 赵丁选, 李天宇, 康怀亮, 张志文, 李牧菲. 混合动力工程车辆自动变速技术[J]. 吉林大学学报(工学版), 2014, 44(2): 358-363.
[10] 闫丽娟, 孙辉, 刘伟, 姜继海, 赵燕, 韩家威. 行走工程机械液压混合动力技术[J]. 吉林大学学报(工学版), 2014, 44(2): 364-368.
[11] 宗长富, 聂枝根, 王化吉. 商用车简化模型参数辨识方法[J]. 吉林大学学报(工学版), 2013, 43(05): 1171-1177.
[12] 张琰, 黄河, 任露泉. 仿生挖掘机斗齿减阻试验[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 126-130.
[13] 郑宏宇, 刘海贞, 宗长富. 爆胎汽车电动助力转向系统补偿力矩算法[J]. 吉林大学学报(工学版), 2012, (03): 521-526.
[14] 许洪国, 彭涛, 刘宏飞, 许言. 半挂汽车转向稳定性反馈线性化控制[J]. 吉林大学学报(工学版), 2012, 42(02): 272-278.
[15] 郭孔辉, 郭耀华. 基于整车性能的液压减振器虚拟调校[J]. 吉林大学学报(工学版), 2012, 42(01): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!