吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3151-3159.doi: 10.13229/j.cnki.jdxbgxb.20220004

• 交通运输工程·土木工程 • 上一篇    下一篇

预应力UHPC-NC组合梁截面优化设计

朱劲松1,2(),秦亚婷1,刘周强1   

  1. 1.天津大学 建筑工程学院,天津 300072
    2.天津大学,滨海土木工程与安全教育部重点实验室,天津 300072
  • 收稿日期:2022-01-04 出版日期:2023-11-01 发布日期:2023-12-06
  • 作者简介:朱劲松(1975-),男,教授,博士. 研究方向:高性能桥梁结构与桥梁工程. E-mail: jszhu@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(52078333);天津市交通运输科技发展计划项目(2019B-21)

Section optimization design of prestressed UHPC-NC composite beams

Jin-song ZHU1,2(),Ya-ting QIN1,Zhou-qiang LIU1   

  1. 1.School of Civil Engineering,Tianjin University,Tianjin 300072,China
    2.Key Laboratory of Coast Civil Structure Safety,Ministry of Education,Tianjin University,Tianjin 300072,China
  • Received:2022-01-04 Online:2023-11-01 Published:2023-12-06

摘要:

针对预应力超高性能混凝土-普通混凝土(UHPC-NC)组合梁结构的优化设计,提出了基于改进的自适应遗传算法的结构优化设计方法。优化设计以材料成本最小化为优化目标,以组合梁截面参数作为优化设计变量,并结合承载力及变形等约束条件,建立预应力UHPC-NC组合梁的数学模型。通过优化算例表明,改进的自适应遗传算法具有较好的极值寻优能力和收敛性能。利用自适应遗传算法搜索求解预应力UHPC-NC组合梁最优设计参数,优化结果表明:优化后得到的组合梁截面参数取值合理,满足约束条件要求。

关键词: 桥梁与隧道工程, 超高性能混凝土组合梁, 优化设计, 遗传算法, 预应力混凝土结构

Abstract:

A structural optimization design method based on improved adaptive genetic algorithm was proposed for the optimal design of prestressed ultrahigh performance concrete-ordinary concrete (UHPC-NC) composite beams.In order to minimize the cost of prestressed UHPC-NC composite beams, a mathematical model of prestressed UHPC-NC composite beams was established by taking the sectional parameters of the composite beams as the optimization variables and combining the constraints of bearing capacity and deformation.The optimization example shows that the improved adaptive genetic algorithm has better optimization ability and convergence performance.The optimal design parameters of prestressed UHPC-NC composite beams were searched by using adaptive genetic algorithm. The optimization results show that the optimized section parameters of prestressed UHPC-NC composite beams are reasonable and meet the requirements of constraint conditions.

Key words: bridge and tunnel engineering, ultra-high performance concrete composite beam, optimization design, genetic algorithm, prestressed concrete structure

中图分类号: 

  • TU318.1

图1

预应力UHPC-NC组合梁示意图"

图2

预应力UHPC-NC组合梁结构示意图"

表1

优化设计变量取值区间"

上下限bf1/mmhf1/mmb/mmbf2/mmhf2/mmhu/mmd/mmN
Min20001501204002001200168
Max300025030080050020003220

表2

UHPC及普通混凝土基本力学性能"

材料轴心抗压强度/MPa峰值压应变/10-6轴心受拉强度/MPa峰值拉应变/10-6弹性模量/GPa
UHPC[7]145.1350010.010 00046.4
普通混凝土[7]40.416783.5112835.5

表3

钢筋基本力学性能"

材料弹性模量/GPa抗拉强度标准值/MPa抗拉强度设计值/MPa极限拉应变/10-6
HRB40020040033020 000
预应力钢绞线1951860126035 000

图3

不同跨径下组合梁优化结果"

表4

预应力UHPC-NC组合梁优化结果"

优化设计 变量跨径L=20 m跨径L=25 m跨径L=30 m跨径L=35 m跨径L=40 m
bf1/mm23002100210022002400
hf1/mm170170160200230
b/mm140120130130160
bf2/mm460450430470720
hf2/mm300220200230320
hu/mm12001400160019002000
d/mm2522252020
N1414141416
高跨比1/16.591/17.421/18.741/18.901/20.40
Mu/(kN·m)7747.898249.7510156.2311933.6916306.03
Vu/kN1467.921498.891754.111995.632578.29
材料成本/ 万元6.497.769.8713.2522.00

图4

预应力UHPC-NC组合梁有限元模型"

表5

预应力UHPC-NC组合梁优化约束条件验算结果"

L/mMd/(kN·m)Mu/(kN·m)Vd/kNVu/kN竖向挠度/mm挠度限值/mm
204 063.087 747.89602.621 467.9217.4533.33
255 665.888 249.75689.541 498.8929.4641.67
307 610.8210 156.23790.781 754.1146.7350.00
3510 544.2511 933.69974.061 995.6357.1058.33
4015 140.3716 306.031 276.042 578.2966.6666.67

表6

预应力UHPC-NC组合梁优化计算校核结果"

L/m抗裂验算/MPa正截面压应力验算/MPa斜截面主压应力验算/MPa
正截面限值斜截面限值计算值限值计算值限值
20-18.727.02.297.0-34.33-72.55-34.36-87.06
25-14.003.50-32.20-32.29
30-9.226.26-45.42-45.45
35-4.001.54-29.07-29.52
40-1.211.21-32.82-33.50

图5

30 m跨径预应力UHPC-NC组合梁有限元分析结果"

图6

组合梁参数变化趋势"

1 Al-Osta M A, Isa M N, Baluch M H, et al. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials, 2017, 134: 279-296.
2 Valikhani A, Jahromi A J, Mantawy I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application[J]. Construction and Building Materials, 2020, 238: 117753.
3 Shirai K, Yin H, Teo W. Flexural capacity prediction of composite RC members strengthened with UHPC based on existing design models[J]. Structures, 2020, 23: 44-55.
4 Shafieifar M, Farzad M, Azizinamini A. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 156: 402-411.
5 张哲,邵旭东,李文光,等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58.
Zhang Zhe, Shao Xu-dong, Li Wen-guang, et al. Experimental study on axial tension performance of ultra-high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58.
6 Tayeh B A, Abu Bakar B H, Megat Johari M A, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay[J]. Construction and Building Materials, 2012, 36: 538-548.
7 李昭,赵华,朱平,等. UHPC-NC组合结构抗弯性能试验及有限元分析[J]. 公路工程, 2019,44(2): 194-200.
Li Zhao, Zhao Hua, Zhu Ping, et al. Test and finite element analysis of flexural performance of UHPC-NC composite structure[J]. Highway Engineering, 2019, 44(2): 194-200.
8 曾蔚,秦阳. 钢筋混凝土梁遗传算法优化设计[J]. 公路交通科技, 2006(8): 81-83.
Zeng Wei, Qin Yang. Optimization design of reinforced concrete beam based on genetic algorithm[J]. Journal of Highway and Traffic Science, 2006(8): 81-83.
9 Senouci A B, Al-Ansari M S. Cost optimization of composite beams using genetic algorithms[J]. Advances in Engineering Software, 2009, 40(11): 1112-1118.
10 Pedro R L, Demarche J, Miguel L F F, et al. An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges[J]. Advances in Engineering Software, 2017, 112: 31-45.
11 Sudira I G N, Hadi B K, Moelyadi M A, et al. Application of genetic algorithm for the design optimization of geodesic beam structure[J]. Applied Mechanics and Materials, 2016, 842: 266-272.
12 邬沛, 李玉顺, 许达, 等. 基于遗传算法的钢-竹组合工字形梁截面优化设计[J]. 建筑结构学报, 2020,41(1): 149-155.
Wu Pei, Li Yu-shun, Xu Da, et al. Optimization of section of steel-bamboo composite i-beam based on genetic algorithm[J]. Journal of Building Structures, 2020, 41(1): 149-155.
13 de Munck M, de Sutter S, Verbruggen S, et al. Multi-objective weight and cost optimization of hybrid composite-concrete beams[J]. Composite Structures, 2015, 134: 369-377.
14 Umeonyiagu I E, Nwobi-Okoye C C. Modelling and multi objective optimization of bamboo reinforced concrete beams using ANN and genetic algorithms[J]. European Journal of Wood and Wood Products, 2019, 77(5): 931-947.
15 黄冀卓,王湛. 基于遗传算法的抗震钢框架多目标优化设计[J]. 力学学报, 2007(3): 389-397.
Huang Ji-zhuo, Wang Zhan. Multi-objective optimization design of seismic steel frame based on genetic algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007(3): 389-397.
16 王佩艳,赵晨,耿小亮,等. 基于改进自适应遗传算法的层合板铺层顺序优化方法[J]. 科学技术与工程, 2018, 18(6): 336-340.
Wang Pei-yan, Zhao Chen, Geng Xiao-liang, et al. Optimization method of laminate layering sequence based on improved adaptive genetic algorithm[J]. Science Technology and Engineering, 2018, 18(6): 336-340.
17 Whitworth A H, Tsavdaridis K D. Embodied energy optimization of steel-concrete composite beams using a genetic algorithm[J]. Procedia Manufacturing, 2020, 44: 417-424.
18 万世成, 黄侨, 关健, 等. 预应力碳纤维板加固钢-混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报: 工学版, 2019, 49(4): 1114-1123.
Wan Shi-cheng, Huang Qiao, Guan Jian, et al. Negative moment zone test of prestressed carbon fiber plate reinforced steel-concrete composite continuous beam[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1114-1123.
19 孙琪凯, 张楠, 刘潇, 等. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报: 工学版, 2023, 53(2): 488-495.
Sun Qi-kai, Zhang Nan, Liu Xiao, et al. Dynamic reduction coefficient of steel-composite beams based on Timoshenko beam theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 488-495.
20 朱劲松, 秦亚婷, 史腾. 预应力UHPC-NC组合梁抗弯承载力计算方法[J]. 中南大学学报, 2022, 53(10): 3989-4000.
Zhu Jin-song, Qin Ya-ting, Shi Teng. Calculation method for flexural capacity of prestressed UHPC-NC composite beams[J]. Journal of Central South University(Science and Technology Edition), 2022, 53(10): 3989-4000.
21 刘大同. 中小跨径桥梁截面优化设计研究[D]. 武汉: 武汉理工大学交通学院, 2005.
Liu Da-tong. Study on section optimization design of medium and small span bridges[D]. Wuhan: College of Transportation, Wuhan University of Technology, 2005.
[1] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[2] 田国红,代鹏杰. 基于单亲遗传算法的无人驾驶汽车主动避撞方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2404-2409.
[3] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[4] 卜建清,郭至博,张吉仁,荀敬川,黄晓明. 多损伤钢-混组合梁桥力学性能有限元分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1621-1637.
[5] 毛亚娜,刘世忠,杏剑,杨华,焦峪波. 超高性能玻璃砂混凝土-高强钢筋粘结滑移特性及其声发射参数表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1686-1694.
[6] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[7] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[8] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[9] 韩智强,谢刚,周勇军,刘世忠,晋民杰. 曲线桥梁车桥耦合振动数值分析方法[J]. 吉林大学学报(工学版), 2023, 53(2): 515-522.
[10] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[11] 杨国俊,田骐玮,吕明航,杜永峰,唐光武,韩宗健,伏一多. 大跨度悬索桥隧道式锚碇力学特性研究综述[J]. 吉林大学学报(工学版), 2022, 52(6): 1245-1263.
[12] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
[13] 姜斌祥,姜彤彤,王永雷. 基于文化遗传算法的毒品检验区块链共识算法优化[J]. 吉林大学学报(工学版), 2022, 52(3): 684-692.
[14] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[15] 张立杰,阿喜塔,田笑,李稳. 基于Gamma过程的加速退化试验多目标优化设计[J]. 吉林大学学报(工学版), 2022, 52(2): 361-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[9] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[10] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .