吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1245-1263.doi: 10.13229/j.cnki.jdxbgxb20210962

• 综述 • 上一篇    

大跨度悬索桥隧道式锚碇力学特性研究综述

杨国俊1,2(),田骐玮1,吕明航1,杜永峰1,唐光武2,韩宗健1,伏一多1   

  1. 1.兰州理工大学 土木工程学院,兰州 730050
    2.招商局重庆交通科研设计院有限公司 桥梁工程结构动力学国家重点实验室,重庆 400067
  • 收稿日期:2021-09-23 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:杨国俊(1988-),男,副教授,博士. 研究方向:隧道式锚碇的力学特性. E-mail:yanggj403@163.com
  • 基金资助:
    国家自然科学基金项目(51808274);中国博士后科学基金项目(2019M653897XB)

Review of mechanic characteristics of tunnel⁃type anchorage of long⁃span suspension bridge

Guo-jun YANG1,2(),Qi-wei TIAN1,Ming-hang LYU1,Yong-feng DU1,Guang-wu TANG2,Zong-jian HAN1,Yi-duo FU1   

  1. 1.School of Civil Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.State Key Laboratory of Bridge Engineering Structural Dynamic,China Merchants Chongqing Communications Technology Research&Design Institute Co. ,Ltd. ,Chongqing 400067,China
  • Received:2021-09-23 Online:2022-06-01 Published:2022-06-02

摘要:

针对隧道式锚碇的力学特性,将国内外对夹持效应、破坏机制和稳定性、承载能力、地震作用下的动力响应4个方面的研究成果进行了综述。隧道锚(TTA)在夹持效应作用下可以抵抗主缆传来的巨大拉拔力;在夹持效应基础上可以推导出其承载能力计算公式,而围岩力学参数、锚塞体的楔形角、埋深等因素会对其承载力有不同程度的影响;隧道锚的破坏是自锚塞体底部与围岩的胶结面起,呈喇叭状向上发展;在地震作用下,隧道锚的前锚面的变形大于后锚面。结合已有的研究内容,对隧道锚力学特性未来的研究方向进行了展望。

关键词: 桥梁与隧道工程, 隧道式锚碇, 夹持效应, 破坏机制, 稳定性, 承载能力, 动力力学响应

Abstract:

In view of the mechanic characteristics of tunnel-type anchorage (TTA), the research results on the clamping effect, the failure mechanism and stability, the bearing capacity and the dynamic response under seismic action are summarized. TTA can resist the huge pulling force from the main cable under the clamping effect. Based on the clamping effect, the formula of its bearing capacity can be deduced, and the mechanical parameters of surrounding rock, the wedge angle and buried depth of the plug body and other factors will have different degrees of influence on its bearing capacity. The failure of TTA starts from the cementation surface between the bottom of the plug body and surrounding rock, and develops upward in horn shape. Under earthquake, the deformation of the front anchor surface is larger than that of the rear anchor surface. Combined with the existing research contents, the future research directions of TTA mechanical properties are prospected.

Key words: bridge and tunnel engineering, tunnel-type anchorage, clamping effect, failure mechanism, stability, bearing capacity, dynamic mechanical response

中图分类号: 

  • U443.24

图1

近20年隧道锚代表性期刊论文数量"

图2

国内悬索桥锚碇使用情况统计"

图3

国内使用隧道锚的悬索桥的数量统计"

图4

国内使用隧道锚的悬索桥的跨径统计"

图5

隧道式锚碇受力简图"

表1

不同悬索桥的隧道锚的承载特性"

作者背景桥研究方法设计荷载p下隧道锚位移/mm极限承载力(p为设计荷载)极限荷载下隧道锚的位移/mm
朱玉等24四渡河大桥有限元数值分析-7p-
朱杰兵等25四渡河大桥现场模型试验(1∶12)-7.6p4.9
焦长洲等26南溪长江大桥有限元数值分析1.08--
邬爱清等27四渡河大桥

现场模型试验(1∶12)

有限元数值模拟

0.107.6p0.41
黄东等28-有限元数值模拟0.247.5p0.68
周程等29矮寨大桥有限元数值模拟-5~7p-
江南等30金沙江大桥有限元数值模拟2.979~11p-
Wen等31Dadu River Bridge有限元数值模拟5.77p34
郭喜峰等32大渡河大桥

现场模型试验(1∶10)

有限元数值模拟

0.427p6.41
李维树等33金沙江大桥现场模型试验(1∶10)0.1429.5p-
王中豪等34金沙江大桥现场模型试验(1∶10)0.1189.5p3.550
颜冠峰等35大渡河大桥有限元数值模拟1左右7p3.5左右
王鹏宇36几江长江大桥

现场模型试验(1∶10)

有限元数值模拟

很小11.5p48.2
樊火印等37花江北盘江大桥有限元数值模拟1.54p5.9

表2

不同悬索桥的隧道锚的破坏形式"

作者背景桥研究方法破坏荷载大小(p为设计荷载)破会模式
胡波等4546坝陵河大桥

现场模型试验(1∶20)

现场模型试验(1∶30)

有限元数值模拟

17.5p锚塞体带动周边较大范围内的岩体发生倒塞型的整体拉剪复合破坏
汤华等4748普立大桥

室内模型试验

有限元数值模拟

50p锚塞体附近发生剪切破坏,个别部位为受拉破坏,围岩破坏形式为从锚塞体底部向上发散的倒锥型破坏面
蒋昱州等49伍家岗大桥现场模型试验(1∶50)17p在隧道锚顶部区域会产生张拉与拉剪复合破裂,双锚间岩体区域将产生拉剪破裂,其他联合作用的岩体主要以压剪破坏为主
梁宁慧等50几江长江大桥现场模型试验(1∶30)10p锚碇携带周边一定范围岩体变形破坏,破坏区形状类似一个倒塞体状

图6

隧道锚破坏面动态演化过程[16]"

表3

不同悬索桥的隧道锚的承载特性"

作者背景桥研究方法荷载大小(p为设计荷载)加载时间变形量/mm
罗莉娅等62四渡河大桥有限元数值模拟1p10年0.008
韩冰等63-有限元数值模拟1p15天5.02
付建军64-有限元数值模拟1p100年2.0~3.2
曹春明65伍家岗大桥

室内模型试验(1∶40)

有限元数值模拟

现场模型试验(1∶12)

8p1年2.76
云瑞俊等66金沙江大桥有限元数值模拟1p100年2.151

图7

抗拔桩典型破坏型式"

图8

极限状态下扩底抗拔桩破裂面形状及计算模式"

表4

隧道锚破坏模式分类[88]"

破坏模式发生条件破坏机制破坏位置示意图
锚碇体侧壁界面破坏当围岩完整性较好、质量较高、隧道锚埋深较大、锚碇体与围岩接触界面的结合程度较低时这是隧道锚最为常见的破坏模式,锚碇体与围岩界面的结合程度差是导致该类破坏模式发生的主要原因。严格来讲,该滑移破坏面实际上是一个具有一定厚度的剪切破裂带。

锚碇体与围岩

侧壁接触部位

倒圆锥台

破坏

当围岩完整性较差、质量较低,节理裂隙发育,而且隧道锚埋深较小,但锚碇体与围岩接触面结合程度较好时89破坏面主要出现在围岩之中,破坏面的平面形态可能为直线(立体形态为倒圆锥台形),也可能为曲线(立体形态为喇叭形倒圆锥台形),围岩体的破坏形态可能与围岩的完整性和节理裂隙发育程度有关89

靠近锚碇体

围岩内部

边坡整体

滑移

当隧道锚所在坡体中含优势软弱结构面时软弱结构面构成不利组合,缆力荷载作用下,锚碇体连同附近围岩作为边坡的一部分发生整体性滑移破坏。具体可能表现为两种模式:一种是沿由两组软弱结构面形成的台阶状滑面破坏;另一种是沿缓倾结构面切断岩桥而形成的反倾平面滑面破坏90

含锚碇体

所在边坡

锚碇体压缩破坏当锚碇体混凝土强度不足时在施加预应力阶段,锚碇体前、后端面均承受压应力,施加缆力直至超载阶段,锚碇体前端面的压应力减小,后端面压应力增大,如果混凝土强度不足,则可能在锚碇体后端面预应力钢束的锚固处将混凝土材料压碎89

锚碇体后端面

受压区

图9

各个测点的相对位移计算结果"

1 雷俊卿, 郑明珠, 徐恭义. 悬索桥设计[M]. 北京: 人民交通出版社, 2004.
2 王勇, 曹化明. 悬索桥隧道式锚碇施工技术[J]. 桥梁建设, 2004, 33(2): 53-55.
Wang Yong, Cao Hua-ming. Construction techniques of tunnel-type anchorage for suspension bridge[J]. Bridge Construction, 2004, 33(2): 53-55.
3 阳金惠, 郭占起, 万仁辉, 等. 隧道式锚碇加锚杆在万州长江二桥锚固系统中的应用[J]. 公路, 2002, 46(1): 40-43.
Yang Jin-hui, Guo Zhan-qi, Wan Ren-hui, et al. Application of tunnel anchorage with anchor rods to anchor system of the second Yangtse River bridge in Wanzhou City[J]. Highway, 2002, 46(1): 40-43.
4 陈彰贵, 罗建彬. 重庆长江鹅公岩大桥东锚碇隧道锚工程的质量控制[J]. 公路交通科技, 2003, 18(3): 89-91.
Chen Zhang-gui, Luo Jian-bin. Quality control of the tunnel-type anchorage engineering of the east anchorage of Chongqing Yangtze River Egongyan bridge[J]. Technology of Highway and Transport, 2003, 18(3): 89-91.
5 朱玉, 廖朝华, 彭元诚. 悬索桥隧道锚设计[J]. 公路, 2007, 51(11): 21-27.
Zhu Yu, Liao Chao-hua, Peng Yuan-cheng. Design of tunnel-type anchorage of suspension bridge[J]. Highway, 2007, 51(11): 21-27.
6 Hu Jian-hua, Shen Rui-li. Technical innovations of the Aizhai bridge in China[J]. Journal of Bridge Engineering, 2014, 19(9): No. 04014028.
7 彭运动. 坝陵河大桥设计关键技术介绍[J]. 公路, 2009, 53(5): 39-42.
Peng Yun-dong. Introduction to key technologies of Baling River bridge design[J]. Highway, 2009, 53(5): 39-42.
8 喻正富, 夏国邦, 王世谷, 等. 普立特大桥隧道锚碇区岩体工程地质特性研究[J]. 长江科学院院报, 2015, 32(8): 72-77.
Yu Zheng-fu, Xia Guo-bang, Wang Shi-gu, et al. Geological characteristics of rock masses engineering in the tunnel anchorage area at Puli bridge[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(8): 72-77.
9 黎训国, 汪丽君, 卢磊, 等. 山区悬索桥超大隧道锚施工工艺[J]. 公路, 2017, 61(5): 111-115.
Li Xun-guo, Wang Li-jun, Lu Lei, et al. Construction technology of super large tunnel anchorage of suspension bridge in mountain area[J]. Highway, 2017, 61(5): 111-115.
10 王鹏宇. 重庆几江长江大桥主桥设计[J]. 桥梁建设, 2017, 47(2): 72-77.
Wang Peng-yu. Design of main bridge of Jijiang Changjiang River bridge in Chongqing[J]. Bridge Construction, 2017, 47(2): 72-77.
11 田国印, 徐桂权, 王安鑫. 中渡长江大桥隧道锚施工关键技术[J]. 世界桥梁, 2017, 45(3): 39-43.
Tian Guo-yin, Xu Gui-quan, Wang An-xin. Key techniques for tunnel anchor construction of Zhongdu Changjiang River bridge[J]. World Bridges, 2017, 45(3): 39-43.
12 熊晓荣, 汤华, 廖明进, 等. 隧道锚"楔形效应"的室内模型试验研究[J]. 岩土力学, 2018, 39(): 181-190.
Xiong Xiao-rong, Tang Hua, Liao Ming-jin, et al. Laboratory model test on "wedge-effect" of pullout capacity of tunnel-type anchorage[J]. Rock and Soil Mechanics, 2018, 39(Sup.1): 181-190.
13 张宜虎, 邬爱清, 周火明, 等. 悬索桥隧道锚承载能力和变形特征研究综述[J]. 岩土力学, 2019, 40(9): 3576-3584.
Zhang Yi-hu, Wu Ai-qing, Zhou Huo-ming, et al. Review of bearing capacity and deformation characteristics of tunnel-type anchorage for suspension bridge[J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.
14 Han Ya-feng, Liu Xin-rong, Ning Wei, et al. A comprehensive review of the mechanical behavior of suspension bridge tunnel-type anchorage[J]. Advances in Materials Science and Engineering, 2019(1): 1-19.
15 刘新荣, 韩亚峰, 景瑞, 等. 隧道锚承载特性、变形破坏特征及典型案例分析[J]. 地下空间与工程学报, 2019, 15(6): 1780-1791.
Liu Xin-rong, Han Ya-feng, Jing Rui. Bearing characteristics, deformation failure characteristics and typical case studies of tunnel-type anchorage[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1780-1791.
16 王东英, 汤华, 葛修润, 等. 隧道锚承载特性及其破坏模式探究[J]. 岩石力学与工程学报, 2019, 38(): 3374-3383.
Wang Dong-ying, Tang Hua, Ge Xiu-run, et al. Study on the bearing characteristic and failure pattern of tunnel-type anchorage[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup.2): 3374-3383.
17 王东英, 汤华, 尹小涛, 等. 基于应变软化的隧道锚渐进破坏过程探究[J]. 岩石力学与工程学报, 2019, 38(): 3448-3459.
Wang Dong-ying, Tang Hua, Yin Xiao-tao, et al. Preliminary study on the progressive failure of tunnel-type anchorage based on strain-softening theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup.2): 3448-3459.
18 Liu Xin-rong, Han Ya-feng, Yu Chun-tao, et al. Reliability assessment on stability of tunnel-type anchorages[J]. Computers and Geotechnics, 2020, 125: No. 103661.
19 张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究——抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103.
Zhang Qi-hua, Yu Mei-wan, Yu Zheng-fu, et al. Field model tests on pullout capacity of tunnel-type anchorage of Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103.
20 Zhang Qi-hua, Li Yu-jie, Yu Mei-wan, et al. Study of the rock foundation stability of the Aizhai suspension bridge over a deep canyon area in China[J]. Engineering Geology, 2015, 198: 65-77.
21 肖本职, 吴相超, 姚文明. 悬索桥隧道锚锭围岩体极限承载力灰色预测[J]. 岩土力学, 2003, 24(): 143-145.
Xiao Ben-zhi, Wu Xiang-chao, Yao Wen-ming. Grey forecast of bearing capacity of rock mass surrounding tunnel anchorage for a suspension bridge[J]. Rock and Soil Mechanics, 2003, 24(Sup.1): 143-145.
22 杨懋偲, 杨星宇, 卢波, 等. 改进灰色模型的隧道锚极限承载力研究[J]. 地下空间与工程学报, 2018, 14(): 103-108.
Yang Mao-cai, Yang Xing-yu, Lu Bo, et al. Study on ultimate bearing capacity of tunnel-type anchorage by improved grey model[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Sup.1): 103-108.
23 汪海滨, 高波. 隧道式复合锚碇的作用机理[J]. 西南交通大学学报, 2005, 40(6): 759-764.
Wang Hai-bin, Gao Bo. Load-bearing mechanism of compound tunnel anchorage[J]. Journal of South East Jiaotong University, 2005, 40(6): 759-764.
24 朱玉, 卫军, 李昊, 等. 大跨径悬索桥隧道锚承载力分析[J]. 华中科技大学学报: 自然科学版, 2005, 33(7): 90-93.
Zhu Yu, Wei Jun, Li Hao, et al. Support capability of tunnel-type anchorage of a long-span suspension bridge[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2005, 33(7): 90-93.
25 朱杰兵, 邬爱清, 黄正加, 等. 四渡河特大悬索桥隧道锚模型拉拔试验研究[J]. 长江科学院院报, 2006, 23(4): 51-55.
Zhu Jie-bing, Wu Ai-qing, Huang Zheng-jia, et al. Pulling test of anchorage model of Siduhe Suspension bridge[J]. Journal of Yangtze River Scientific Research Institute, 2006, 23(4): 51-55.
26 焦长洲, 高波, 汪海滨. 悬索桥隧道式复合锚碇承载特征分析[J]. 公路, 2008, 52(4): 60-64.
Jiao Chang-zhou, Gao Bo, Wang Hai-bin. Anlysis of load-bearing characteristic of tunnel-type compound anchorage of Suspension bridge[J]. Highway, 2008, 52(4): 60-64.
27 邬爱清, 彭元诚, 黄正加, 等. 超大跨度悬索桥隧道锚承载特性的岩石力学综合研究[J]. 岩石力学与工程学报, 2010, 29(3): 433-441.
Wu Ai-qing, Peng Yuan-cheng, Huang Zheng-jia, et al. Rock mechanics comprehensive study of bearing capacity characteristics of tunnel anchorage for super-large span suspension bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 433-441.
28 黄东, 姚建军, 汪宏. 山区公路悬索桥隧道锚设计[J]. 桥梁建设, 2010, 39(3): 47-50.
Huang Dong, Yao Jian-jun, Wang Hong. Design of tunnel-type anchorage for highway suspension bridge in mountainous region[J]. Bridge Construction, 2010, 39(3): 47-50.
29 周程, 景锋, 边智华, 等. 薄层状灰岩区大型隧道锚碇承载力特性的 岩石力学综合研究[J]. 中外公路, 2011, 36(6): 41-45.
Zhou Cheng, Jing Feng, Bian Zhi-hua, et al. Rock mechanics comprehensive research on the bearing capacity characteristics of large tunnel anchorage in thin-bedded limestone area[J]. Journal of China & Foreign Highway, 2011, 36(6): 41-45.
30 江南, 冯君. 铁路悬索桥大吨位隧道锚承载性能分析[J]. 铁道学报, 2013, 35(8): 88-93.
Jiang Nan. Feng Jun. Analysis on bearing performance of long-tonnage tunnel-type anchorage of railway suspension bridge[J]. Journal of the China Railway Society, 2013, 35(8): 88-93.
31 Wen Li-na, Cheng Qian-gong, Cheng Qiang, et al. Stabilitation research of the tunnel-type anchorage of Dadu River bridge in Luding in Yaan to Kangding expressway[J]. American Journal of Civil Engineering, 2017, 5(4): 196-204.
32 郭喜峰, 周火明, 程强, 等. 特大悬索桥隧道锚岩石力学综合研究[J]. 中国科学: 技术科学, 2018, 48(7): 799-809.
Guo Xi-feng, Zhou Huo-ming, Cheng Qiang, et al. Rock mechanics comprehensive study of tunnel anchorage for super large suspension bridge[J]. Scientia Sinica Technologica, 2018, 48(7): 799-809.
33 李维树, 王中豪, 李栋, 等. 隧道锚现场缩尺模型试验中的伺服控制与采集系统[J]. 地下空间与工程学报, 2018, 14(): 98-102.
Li Wei-shu, Wang Zhong-hao, Li Dong, et al. Servo control and collect system in in-situ reduced scale model test of tunnel anchorage[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Sup.1): 98-102.
34 王中豪, 马健, 武文祥, 等. 虎跳峡金沙江大桥隧道锚现场模型试验研究[J]. 地下空间与工程, 2018, 14(5): 1180-1184, 1212.
Wang Zhong-hao, Ma Jian, Wu Wen-xiang, et al. Tunnel-type anchorage field model test of Hutiaoxia Jinsha River bridge[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1180-1184, 1212.
35 颜冠峰, 王明年, 李睿峰, 等. 大渡河桥隧道锚力学响应研究及承载力判定[J]. 地下空间与工程学报, 2019, 15(4): 1149-1155.
Yan Guan-feng, Wang Ming-nian, Li Rui-feng, et al. Research on mechanical reaction and ultimate capacity of tunnel-type anchorage of Daduhe Super bridge[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1149-1155.
36 王鹏宇. 软岩地区悬索桥隧道锚设计研究[J]. 铁道工程学报, 2019(8): 51-55.
Wang Peng-yu. Research on the design of tunnel-type anchorage of suspension bridge in soft rock area[J]. Journal of the China Railway Society, 2019(8): 51-55.
37 樊火印, 师启龙, 过超. 贵州花江北盘江大桥隧道式锚碇基础承载特性研究[J]. 公路, 2020, 65(3): 126-131.
Fan Huo-yin, Shi Qi-long, Guo Chao. Research on bearing characteristics of tunnel anchor foundation of Beipanjiang Bridge in Huajiang, Guizhou[J]. Highway, 2020, 65(3): 126-131.
38 Jiang Nan, Feng Jun. Effect of cross section type of tunnel-type anchorage on its mechanical behavior for suspension bridge[J]. Journal of Chongqing Jiaotong University(Natural Science), 2012, 31(4): 756-759.
39 余美万, 张奇华, 喻正富, 等. 基于夹持效应的普立特大桥隧道锚现场模型试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 261-270.
Yu Mei-wan, Zhang Qi-hua, Yu Zheng-fu, et al. Field model experiment on clamping effect of tunnel-type anchorage at Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 261-270.
40 Li Yu-jie, Luo Rong, Zhang Qi-hua, et al. Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage[J]. Geomechanics and Engineering, 2017, 12(1): 139-160.
41 王东英, 尹小涛, 杨光华. 悬索桥隧道式锚碇夹持效应的试验研究[J]. 岩土力学, 2021, 42(4): 1003-1011, 1055.
Wang Dong-ying, Yin Xiao-tao, Yang Guang-hua. Experimental study of the clamping effect of the suspension bridge tunnel-type anchorage[J]. Rock and Soil Mechanics, 2021, 42(4): 1003-1011, 1055.
42 吴相超, 肖本职, 彭朝全. 重庆长江鹅公岩大桥东锚碇岩体力学参数研究[J]. 地下空间, 2003, 32(2): 136-138, 152.
Wu Xiang-chao, Xiao Ben-zhi, Peng Chao-quan. A study on rock mechanical parameters of east anchorage of Egongyan bridge across Yangtze River in Chongqing[J]. Underground Space, 2003, 32(2): 136-138, 152.
43 汪海滨, 高波, 孙振. 悬索桥隧道式锚碇系统力学行为研究[J]. 岩石力学与工程学报, 2005, 24(15): 2728-2735.
Wang Hai-bin, Gao Bo, Sun Zhen. Study on mechanical behaviour of tunnel anchorage system for suspension bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2728-2735.
44 朱玉, 卫军, 李昊, 等. 大跨径悬索桥隧道锚变位分析[J]. 岩石力学与工程学报, 2005, 24(19): 3588-3593.
Zhu Yu, Wei Jun, Li Hao, et al. Analysis of displacement of tunnel-type anchorage for a large-span suspension bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3588-3593.
45 胡波, 曾钱帮, 彭运动, 等. 隧道锚碇围岩稳定分析及破坏模式研究[J]. 中国科学院研究生院学报, 2008, 25(4): 487-492.
Hu Bo, Zeng Qian-bang, Peng Yun-dong, et al. The stability and failure mode study on the tunnel anchorage rock masses[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2008, 25(4): 487-492.
46 胡波, 赵海滨, 王思敬, 等. 隧道锚围岩拉拔模型试验研究及数值模拟[J]. 岩土力学, 2009, 30(6): 1575-1582.
Hu Bo, Zhao Hai-bin, Wang Si-jing, et al. Pull-out model test for tunnel anchorage and numerical analysis[J]. Rock and Soil Mechanics, 2009, 30(6): 1575-1582.
47 汤华, 熊晓荣, 吴振君, 等. 隧道锚抗拔作用机理的室内模型试验[J]. 上海交通大学学报, 2015, 49(7): 935-939, 945.
Tang Hua, Xiong Xiao-rong, Wu Zhen-jun, et al. Laboratory model test study of pullout mechanism of tunnel anchorage[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 935-939, 945.
48 汤华, 熊晓荣, 邓琴, 等. 普立特大桥隧道式锚碇围岩系统的变形规律及破坏机制[J]. 上海交通大学学报, 2015, 49(7): 961-967.
Tang Hua, Xiong Xiao-rong, Deng Qin, et al. Deformation law and failure mechanism of anchorage-surrounding rock system of Puli extra-large bridge[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 961-967.
49 蒋昱州, 王瑞红, 朱杰兵, 等. 伍家岗大桥隧道锚三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2016, 35(): 4103-4113.
Jiang Yu-zhou, Wang Rui-hong, Zhu Jie-bing, et al. Geomechanical model test on global stability for Wujiagang bridge tunnel-type anchorages[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup.2): 4103-4113.
50 梁宁慧, 张锐, 刘新荣, 等. 软岩地质条件下浅埋隧道锚缩尺模型试验[J]. 重庆大学学报, 2016, 39(6): 78-86.
Liang Ning-hui, Zhang Rui, Liu Xin-rong, et al. Scale model test on shallow tunnel anchorage under soft rock geological conditions[J]. Journal of Chongqing University, 2016, 39(6): 78-86.
51 于新华, 王丽新, 付环宇, 等. 南溪长江大桥隧道锚原位模型试验及参数反演分析[J]. 科学技术与工程, 2015, 15(4): 160-165.
Yu Xin-hua, Wang Li-xin, Fu Huan-yu, et al. Test and parameter inversion analysis of tunnel-type anchorage orthotopic model of Nanxi Yangtze River bridge[J]. Science Technology and Engineering, 2015, 15(4): 160-165.
52 庞正江, 孙豪杰, 赖其波, 等. 1:10 隧道锚缩尺模型的变形及应力特性[J]. 岩石力学与工程学报, 2015, 34(): 3972-3978.
Pang Zheng-jiang, Sun Hao-jie, Lai Qi-bo, et al. Deformation and stress characteristics of tunnel-type anchorage model on scale 1:10[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup.2): 3972-3978.
53 周火明, 李维树, 王帅, 等. 软岩隧道锚变形破坏机理缩尺模型试验研究[J]. 长江科学院院报, 2016, 33(10): 67-71.
Zhou Huo-ming, Li Wei-shu, Wang Shuai. Scale model test on the deformation and failure mechanism of tunnel-type anchorage surrounded by soft rock[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(10): 67-71.
54 李栋梁, 刘新荣, 李俊江, 等. 浅埋软岩隧道式锚碇稳定性原位模型试验研究[J]. 岩土工程学报, 2017, 39(11): 2078-2087.
Li Dong-liang, Liu Xin-rong, Li Jun-jiang, et al. Stability of shallowly buried soft rock tunnel anchorage by in-situ model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2078-2087.
55 李栋梁, 刘新荣, 周火明, 等. 下卧软弱夹层的软岩隧道式锚碇承载特性研究[J]. 岩石力学与工程学报, 2017, 36(10): 2457-2465.
Li Dong-liang, Liu Xin-rong, Zhou Huo-ming, et al. Bearing behavior of tunnel anchorage in soft rock with an underlying weak interlayer[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2457-2465.
56 Han Ya-feng, Liu Xin-rong, Li Dong-liang, et al. Model test on the bearing behaviors of the tunnel-type anchorage in soft rock with underlying weak interlayers[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 1023-1040.
57 杨星宇, 周火明, 王中豪, 等. 重力相似条件对现场隧道锚模型试验的影响[J]. 地下空间与工程学报, 2018, 14(): 92-97, 147.
Yang Xing-yu, Zhou Huo-ming, Wang Zhong-hao, et al. Influence of gravity similitude condition on tunnel anchorage field model test[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Sup.1): 92-97, 147.
58 杨星宇, 周火明, 王中豪, 等. 层状泥岩隧道锚围岩滑动破坏特性研究[J]. 地下空间与工程学报, 2019, 15(3): 755-761.
Yang Xing-yu, Zhou Huo-ming, Wang Zhong-hao, et al. Damage sliding characteristics of surrounding rock in bedded mudstone tunnel anchorage[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 755-761.
59 王东英, 汤华, 尹小涛, 等. 隧道式锚碇承载机制的室内模型试验探究[J]. 岩石力学与工程学报, 2019, 38(): 2690-2703.
Wang Dong-ying, Tang Hua, Yin Xiao-tao, et al. Study on the bearing mechanism of tunnel-type anchorage based on laboratory model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup.1): 2690-2703.
60 张利洁, 黄正加, 雷普. FLAC-3D在边坡岩体稳定性分析中的应用[J]. 岩土力学, 2005, 26(): 61-64.
Zhang Li-jie, Huang Zheng-jia, Lei Pu. Application of FLAC-3D to stability analysis of slope rock mass[J]. Roek and Soil Mechanics, 2005, 26(Sup.2): 61-64.
61 王者超, 乔丽苹. 土蠕变性质及其模型研究综述与讨论[J]. 岩土力学, 2011, 32(8): 2251-2260.
Wang Zhe-chao, Qiao Li-ping. A review and discussion on creep behavior of soil and its models[J]. Rock and Soil Mechanics, 2011, 32(8): 2251-2260.
62 罗莉娅, 卫军. 岩体蠕变对悬索桥隧道锚围岩稳定性的影响分析[J]. 中南公路工程, 2007, 32(3): 133-136.
Luo Li-ya, Wei Jun. The effect of rock creep on the long term stability of wall rock of tunnel-style anchor in a suspension bridge[J]. Central South Highway Engineering, 2007, 32(3): 133-136.
63 韩冰, 王芝银, 丁秀丽, 等. 大桥隧道锚碇三维粘弹塑性数值模拟[J]. 长安大学学报: 自然科学版, 2008, 28(1): 77-80, 96.
Han Bing, Wang Zhi-yin, Ding Xiu-li, et al. 3D visco-elasto-plastic numerical simulation for tunnel anchorage of bridge[J]. Journal of Changʾan University (Natural Science Edition), 2008, 28(1): 77-80, 96.
64 付建军, 蒋武军, 赵海斌, 等. 考虑岩体流变的隧道锚长期稳定性研究[J]. 长江科学院院报, 2014, 31(11): 12-16.
Fu Jian-jun, Jiang Wu-jun, Zhao Hai-bin, et al. Long-term stability of tunnel anchor in consideration of rock rheology[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(11): 12-16.
65 曹春明, 易伦雄, 王碧波. 宜昌伍家岗长江大桥隧道锚设计与研究[J]. 桥梁建设, 2020, 50(2): 80-85.
Cao Chun-ming, Yi Lun-xiong, Wang Bi-bo. Design and study of tunnel anchorage for Wujiagang Changjiang River bridge in Yichang[J]. Bridge Construction, 2020, 50(2): 80-85.
66 云瑞俊, 周湘, 梅松华. 基于CVISC模型的隧道式锚碇围岩的长期稳定性研究[J]. 公路, 2020, 65(12): 91-96.
Yun Rui-jun, Zhou Xiang, Mei Song-hua. Research on long-term stability of surrounding rock of tunnel anchor based on CVISC model[J]. Highway, 2020, 65(12): 91-96.
67 赵海斌, 于新华, 彭运动, 等. 坝陵河大桥隧道锚围岩力学特性原位试验研究[J]. 河海大学学报: 自然科学版, 2009, 37(6): 680-684.
Zhao Hai-bin, Yu Xin-hua, Peng Yun-dong, et al. In-situ tests on mechanical properties of rock surrounding tunnel-type anchors of Balinghe bridge[J]. Journal of Hohai University (Natural Sciences), 2009, 37(6): 680-684.
68 梨高辉, 吴从师, 邓泷波. 基于变位规律的悬索桥锚碇隧道围岩损伤度安全阈值研究[J]. 岩石力学与工程学报, 2010, 29(): 3633-3640.
Li Gao-hui, Wu Cong-shi, Deng Long-bo. Study of safety threshold of surrounding rock damage degree of anchorage tunnel for suspension bridge based on displacement rule[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup.2): 3633-3640.
69 欧阳燕青, 于新华. 隧道锚锚碇胶结面剪切流变力学特性研究[J]. 湘潭大学自然科学学报, 2014, 36(4): 38-42.
Ouyang Yan-qing, Yu Xin-hua. Investigation on shear Rheological mechanical properties of cementation plane for tunnel anchor anchorage[J]. Natural Science Journal of Xiangtan University, 2014, 36(4): 38-42.
70 王中豪, 周火明, 李维树, 等. 基于细菌觅食优化算法的岩体压缩流变参数反演[J]. 长江科学院院报, 2015, 32(10): 85-89, 106.
Wang Zhong-hao, Zhou Huo-ming, Li Wei-shu. Inversion of compressive Rheological parameters using bacterial foraging optimization algorithm[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(10): 85-89, 106.
71 文丽娜, 程谦恭, 程强, 等. 围岩附加拉力对隧道锚蠕变特性的影响研究[J]. 铁道工程学报, 2019, 36(3): 32-37, 71.
Wen Li-na, Cheng Qian-gong, Cheng Qiang, et al. Research on the influence of additional tension of surrounding rock on creep characteristics of tunnel anchorage[J]. Journal of Railway Engineering Society, 2019, 36(3): 32-37, 71.
72 文丽娜, 程谦恭, 程强, 等. 悬索桥隧道锚原位缩尺模型蠕变试验研究[J]. 西南交通大学学报, 2020, 55(1): 202-209.
Wen Li-na, Cheng Qian-gong, Cheng Qiang, et al. Study on creep test of in-situ scaling model of suspension bridge tunnel anchorage[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 202-209.
73 文丽娜, 程谦恭, 程强, 等. 提供兴康特大桥反力的隧道锚蠕变试验研究[J]. 工程科学与技术, 2019, 51(6): 124-133.
Wen Li-na, Cheng Qian-gong, Cheng Qiang, et al. Creep test of tunnel anchor providing reaction force of Xingkang bridge[J]. Advanced Engineering Sciences, 2019, 51(6): 124-133.
74 余美万, 张奇华, 高利萍, 等. 金东大桥隧道锚现场模型试验及承载能力分析[J]. 岩土工程学报, 2021, 43(2): 338-346.
Yu Mei-wan, Zhang Qi-hua, Gao Li-ping, et al. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346.
75 茅兆祥, 王成树, 张奇华, 等. 某特大悬索桥隧道锚碇区岩体稳定性分析[J]. 公路, 2011, 55(8): 5-8.
Mao Zhao-xiang, Wang Cheng-shu, Zhang Qi-hua, et al. Analysis of rock mass stability in tunnel anchorage zone of a long span suspension bridge[J]. Highway, 2011, 55(8): 5-8.
76 胡中超, 杨钊, 陈培帅. 隧道锚开挖循环进尺的时空效应分析[J]. 中外公路, 2012, 32(4): 214-217.
Hu Zhong-chao, Yang Zhao, Chen Pei-shuai. Time-space effect analysis of cyclic footage of tunnel anchor excavation[J]. Journal of China & Foreign Highway, 2012, 32(4): 214-217.
77 Liu Yi, Ji Fu-quan, Chen Pei-shuai. Analysis of space-time effect for footage of tunnel-type anchorage by tunneling cycle[J]. Applied Mechanics and Materials, 2014, 501-504: 1749-1752.
78 Li Na-na, Zhou Yong-qiang, Zhao Yan-qiang. Analysis of suspension bridge tunnel-type anchorage construction on the stability of surrounding rock[J]. E3S Web of Conferences, 2020, 198(1): No. 02006.
79 云瑞俊, 梅松华, 周湘. 金安金沙江大桥丽江侧隧道锚系统数值分析[J]. 公路, 2020, 65(12): 96-102.
Yun Rui-jun. Mei Song-hua, Zhou Xiang. Numerical analysis of the tunnel anchor system on the Lijiang side of Jin'an Jinsha River bridge[J]. Highway, 2020, 65(12): 96-102.
80 朱玉, 卫军, 李昊, 等. 悬索桥隧道锚与下方公路隧道相互作用分析[J]. 铁道科学与工程学报, 2005, 2(1): 57-61.
Zhu Yu, Wei Jun, Li Hao, et al. Analysis on interaction between tunnel-type anchorage in suspension bridge and highway tunnel[J]. Journal of Railway Science and Engineering, 2005, 2(1): 57-61.
81 卫军, 李昊, 朱玉, 等. 四渡河特大悬索桥隧道锚固系统数值分析[J]. 公路, 2005,49 (5): 48-51.
Wei Jun, Li Hao, Zhu Yu, et al. Numerical analysis of tunnel-type anchorage system of Sidu River suspension bridge[J]. Highway, 2005, 49(5): 48-51.
82 焦长洲, 高波. 隧道式锚碇与上覆隧道相互作用的力学性能研究[J]. 中国铁道科学, 2008, 29(5): 65-71.
Jiao Chang-zhou, Gao Bo. Research on the mechanical properties of the interaction between compound tunnel anchorage and overlying tunnel[J]. China Railway Science, 2008, 29(5): 65-71.
83 梨高辉, 吴从师, 邓泷波, 等. 悬索桥隧道式锚碇和下穿公路隧道相互作用机制研究[J]. 岩土力学, 2010, 31(): 363-369.
Li Gao-hui, Wu Cong-shi, Deng Long-bo, et al. Research on interaction mechanism of tunnel-type anchorage with undercrossing tunnel for suspension bridge[J]. Rock and Soil Mechanics, 2010, 31(Sup.1): 363-369.
84 何思明. 抗拔桩破坏特性及承载力研究[J]. 岩土力学, 2001, 22(3): 308-310.
He Si-ming. Study on bearing capacity and failure of uplift pile[J]. Rock and Soil Mechanics, 2001, 22(3): 308-310.
85 阮孝政. 嵌岩桩与扩底桩抗拔承载特性数值分析[D]. 大连:大连理工大学土木水利学院, 2009.
Ruan Xiao-zheng. Numerical analysis of uplift bearing capacity behaviour of rock-socketed pile and belled pile[D]. Dalian: School of Civil and Hydraulic Engineering, Dalian University of Technology, 2009.
86 朱碧堂, 杨敏. 抗拔桩的变形与极限承载力计算[J]. 建筑结构学报, 2006, 27(3): 120-129.
Zhu Bi-tang, Yang Min. Calculation of displacement and ultimate uplift capacity of tension piles[J]. Journal of Building Structures, 2006, 27(3): 120-129.
87 黄茂松, 王向军, 吴江斌, 等. 不同桩长扩底抗拔桩极限承载力的统一计算模式[J]. 岩土工程学报, 2011, 33(1): 63-69.
Huang Mao-song, Wang Xiang-jun, Wu Jiang-bin, et al. Unified approach to estimate ultimate bearing capacity of uplift piles with enlarged base[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 63-69.
88 江南, 黄林, 冯军, 等. 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009, 1047.
Jiang Nan, Huang Lin, Feng Jun, et al. Research on design and calculation method of tunnel-type anchorage of railway suspension bridge[J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009, 1047.
89 江南. 铁路悬索桥隧道式锚碇承载机理及计算方法研究[D]. 成都:西南交通大学土木工程学院, 2014.
Jiang Nan. Research on bearing mechanism of tunnel anchorage of railway suspension bridge and its calculation method[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2014.
90 程鸿鑫, 夏才初, 李荣强. 广东虎门大桥东锚碇岩体稳定性分析[J]. 同济大学学报: 自然科学版, 1995, 23(3): 131-135.
Cheng Hong-xin, Xia Cai-chu, Li Rong-qiang. Stability analysis of the rock mass in the east anchoring area of Guang Dong Humen bridge[J]. Journal of Tongji University(Natural Science), 1995, 23(3): 131-135.
91 廖明进, 王全才, 袁从华, 等. 基于楔形效应的隧道锚抗拔承载能力研究[J]. 岩土力学, 2016, 37(1): 185-192, 202.
Liao Ming-jin, Wang Quan-cai, Yuan Cong-hua, et al. Research on the pull-out capacity of the tunnel-type anchorage based on wedge-effect[J]. Rock and Soil Mechanics, 2016, 37(1): 185-192, 202.
92 肖世国, 赵琳智. 悬索桥隧道式锚碇侧摩阻力近似解析算法[J]. 西南交通大学学报, 2018, 53(5): 974-981.
Xiao Shi-guo, Zhao Lin-zhi. Approximate analytical method for skin friction of tunnel-type anchorage used in suspension bridge engineering[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 974-981.
93 汪海滨, 高波. 悬索桥隧道式复合锚碇承载力计算方法[J]. 东南大学学报: 自然科学版, 2005, 35(): 89-94.
Wang Hai-bin, Gao Bo. Calculation method of bearing capacity of compound tunnel anchorage system of suspension bridge[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(Sup.1): 89-94.
94 肖本职, 吴相超, 彭朝全. 重庆鹅公岩大桥隧道锚碇围岩稳定性[J]. 岩石力学与工程学报, 2005, 24(): 5591-5597.
Xiao Ben-zhi, Wu Xiang-chao, Peng Chao-quan. Stability of the anchorage wall Rock of tunnel for Chongqing Egongyan bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Sup.2): 5591-5597.
95 张奇华, 李玉婕, 余美万, 等. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. 岩土力学, 2017, 38(3): 810-820.
Zhang Qi-hua, Li Yu-jie, Yu Mei-wan, et al. Preliminary study of pullout mechanisms and computational mode of pullout force for rocks surrounding tunnel-type anchorage[J]. Rock and Soil Mechanics, 2017, 38(3): 810-820.
96 王东英, 汤华, 尹小涛, 等. 隧道锚抗拔承载力及安全性评估方法[J]. 中国公路学报, 2018, 31(9): 95-103.
Wang Dong-ying, Tang Hua, Yin Xiao-tao, et al. Uplift bearing capacity and safety assessment method of tunnel-type anchorage[J]. China Journal of Highway and Transportation, 2018, 31(9): 95-103.
97 王东英, 汤华, 邓琴, 等. 隧道锚的抗拔安全系数确定方法[J]. 上海交通大学学报, 2018, 52(11): 1501-1507.
Wang Dong-ying, Tang Hua, Deng Qin, et al. Reasonable method of tunnel anchorage uplift stability coefficient in mountain areas[J]. Journal of Shanghai Jiaotong University, 2018, 52(11): 1501-1507.
98 王东英, 汤华, 尹小涛, 等. 基于简化力学模型的隧道锚极限承载力估值公式[J]. 岩土力学, 2020, 41(10): 3405-3414.
Wang Dong-ying, Tang Hua, Yin Xiao-tao, et al. Estimation method of ultimate bearing capacity of tunnel-type anchorage based on simplified mechanical model[J]. Rock and Soil Mechanics, 2020, 41(10): 3405-3414.
99 王中豪, 郭喜峰, 杨星宇. 基于人工智能算法的隧道锚承载能力评价[J]. 西南交通大学学报, 2021, 56(3): 537-543.
Wang Zhong-hao, Guo Xi-feng, Yang Xing-yu. Bearing capacity evaluation of tunnel-type anchorage based on artificial intelligent algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 537-543.
100 曾钱帮, 王思敬, 彭运动, 等. 坝陵河悬索桥西岸隧道式锚碇锚塞体长度方案比选的数值模拟研究[J]. 水文地质与工程地质, 2005, 32(6): 66-70.
Zeng Qian-bang, Wang Si-jing, Peng Yun-dong, et al. Numerical simulation on scheme comparison between two concrete-plug lengths of west tunnel type anchorage of balinghe suspension bridge[J]. Hydrogeology & Engineering Geology, 2005, 32(6): 66-70.
101 刘新荣, 李栋梁, 吴相超, 等. 泥岩隧道锚承载特性现场模型试验研究[J]. 岩土工程学报, 2017, 39(1): 161-169.
Liu Xin-rong, Li Dong-liang, Wu Xiang-chao, et al. Filed model tests on bearing behavior of mudstone tunnel anchorage[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 161-169.
102 吴相超, 刘新荣, 李栋梁, 等. 软岩泡水隧道锚变形破坏模型试验[J]. 岩土力学, 2016, 37(4): 1023-1030.
Wu Xiang-chao, Liu Xin-rong, Li Dong-liang, et al. Failure model test on soaked tunnel anchor in soft surrounding rock[J]. Rock and Soil Mechanics, 2016, 37(4): 1023-1030.
103 文海, 廖明进, 张富贵, 等. 悬索桥隧道锚承载力的室内模型试验研究[J]. 铁道科学与工程, 2017, 14(8): 1735-1742.
Wen Hai, Liao Ming-jin, Zhang Fu-gui, et al. Laboratory model test study on bearing capacity of tunnel anchorage of suspension bridge[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1735-1742.
104 杨忠平, 刘树林, 柯炜, 等. 隧道锚尺寸对其承载特性的影响及破坏机理[J]. 地下空间与工程学报, 2017, 13(5): 1234-1241.
Yang Zhong-ping, Liu Shu-lin, Ke Wei, et al. Influence of the size of tunnel anchorage on bearing behavior and its failure mechanism[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1234-1241.
105 江南, 冯君. 铁路悬索桥隧道式锚碇受载破裂力学行为研究[J]. 岩石力学与工程学报, 2018, 37(7): 1659-1670.
Jiang Nan, Feng Jun. Damage behavior of tunnel-type anchorages of railway suspension bridges under loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1659-1670.
106 Liu Xin-rong, Han Ya-feng, Li Dong-liang, et al. Anti-pull mechanisms and weak interlayer parameter sensitivity analysis of tunnel-type anchorages in soft rock with underlying weak interlayers[J]. Engineering Geology, 2019, 253: 123-136.
107 李明, 袁晓伟, 陈奇, 等. 隧道式锚碇动张拉荷载响应分析[J]. 重庆交通大学学报: 自然科学版, 2015, 34(2): 24-27, 49.
Li Ming, Yuan Xiao-wei, Chen Qi, et al. Analysis of mechanics response for tunnel anchorage to dynamic tension force from main cable[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(2): 24-27, 49.
108 颜冠峰, 王明年, 范宇, 等. 地震波作用下悬索桥隧道锚力学响应研究[J]. 地下空间与工程学报, 2019, 15(): 590-597.
Yan Guan-feng, Wang Ming-nian, Fan Yu, et al. Research on mechanical behavior of tunnel⁃type anchorages system under seismic load[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(Sup.2): 590-597.
[1] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[2] 陈奕颖,金敬福,丛茜,陈廷坤,任露泉. 不同冰点介质对冰黏附强度的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1926-1932.
[3] 于萍,穆特,朱黎辉,周子业,宋杰. 钻具输送装置非线性动力学分析及稳定性控制[J]. 吉林大学学报(工学版), 2021, 51(3): 820-830.
[4] 陈国迎,姚军,王鹏,夏其坤. 适用于后轮轮毂驱动车辆的稳定性控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 397-405.
[5] 李春良,林志豪,赵珞珞. 铰缝及板损伤后对空心板桥横向受力的影响[J]. 吉林大学学报(工学版), 2021, 51(2): 611-619.
[6] 何德峰,罗捷,舒晓翔. 自主网联车辆时滞反馈预测巡航控制[J]. 吉林大学学报(工学版), 2021, 51(1): 349-357.
[7] 梁泉,翁剑成,周伟,荣建. 基于关联规则的公共交通通勤稳定性人群辨识[J]. 吉林大学学报(工学版), 2019, 49(5): 1484-1491.
[8] 秦嘉浩,李臻,光岡宗司,井上英二,宋正河,朱忠祥. 基于模型实验的拖拉机配置对稳定性的影响差异[J]. 吉林大学学报(工学版), 2019, 49(4): 1236-1245.
[9] 于树友,谭雷,王伍洋,陈虹. 基于三步法的汽车主动四轮转向控制[J]. 吉林大学学报(工学版), 2019, 49(3): 934-942.
[10] 贾拓,赵丁选,崔玉鑫. 铰接式装载机倾翻预警方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1762-1769.
[11] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[14] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[15] 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!