吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3141-3150.doi: 10.13229/j.cnki.jdxbgxb.20220138

• 交通运输工程·土木工程 • 上一篇    下一篇

一种新型自复位黏滞阻尼器的性能及应用

布占宇(),何杰,俞斌武   

  1. 宁波大学 土木工程与地理环境学院,浙江 宁波 315211
  • 收稿日期:2022-02-16 出版日期:2023-11-01 发布日期:2023-12-06
  • 作者简介:布占宇(1977-),男,教授,博士.研究方向:预制拼装结构,结构抗震.E-mail:buzhanyu@nbu.edu.cn
  • 基金资助:
    浙江省基础公益研究计划项目(LGG22E080007);宁波市交通运输科技项目(202116);国家重点研发计划项目(2017YFC0702900);国家自然科学基金项目(51878606)

Performance and application of novel self-centering viscous damper

Zhan-yu BU(),Jie HE,Bin-wu YU   

  1. School of Civil & Environmental Engineering and Geography Science,Ningbo University,Ningbo 315211,China
  • Received:2022-02-16 Online:2023-11-01 Published:2023-12-06

摘要:

为进一步提高框架结构震后可修复性,降低建筑物地震残余位移,提出了增设自复位黏滞阻尼器加固方案。建立了自复位黏滞阻尼器的力学模型,利用一组黏滞阻尼器力学性能试验进行了验证,分析了3种初始压力下阻尼力特征,提出了单自由度框架安装黏滞阻尼器的抗震简化计算方法,并利用时程分析进行了验证。结果表明:在同一初始预压力下,随着加载频率的提高,屈服阻尼力、峰值阻尼力、耗能和等效阻尼比随之增大;在相同加载频率和位移幅值下,随着预压力的增大,屈服阻尼力、峰值阻尼力和能量耗散提高。时程分析表明随着结构周期增大,位移需求增大,自复位阻尼器方案框架底部剪力与普通阻尼器方案基本一致,普通阻尼器方案位移需求大于自复位阻尼器方案。自复位黏滞阻尼器可以用于高烈度区框架结构的抗震加固,相比于普通黏滞阻尼器具有较好的抗震性能。

关键词: 框架结构, 抗震加固, 自复位黏滞阻尼器, 力学模型, 简化分析方法

Abstract:

In order to increase the post-earthquake repairability of frame structures and to reduce the earthquake residual displacement of buildings, the strengthening scheme of adding self-centering viscous dampers (SCVD) was proposed. The mechanical model of SCVD was established. The proposed model was validated through a suite of SCVD mechanical performance tests. The damper force characteristics of SCVD under three initial pressures were analyzed. The seismic resistant simplified calculation method for installation of viscous damper in single-degree-of-freedom frame structures was proposed and validated through history analysis. The results show that, under the same initial pressure, with the increasing of loading frequency, the yielding damping force, peak damping force, energy dissipation and effective damping ratio increased. Under the same loading frequency and displacement amplitude, with the increasing of initial pressure, the yielding damping force, peak damping force and energy dissipation increased. Compared with normal FVD mechanical property, the damping force of SCVD increased, the energy dissipation increased not much. The time history analysis of steel frame structure indicated that among the two damper layout scheme, the damper force of SCVD was bigger than that of fluidic viscous damper (FVD), The frame displacement and residual displacement of FVD scheme were larger than that of SCVD scheme. The time history analysis showed that with the increasing of structure period, the displacement demand increased, the base shear of SCVD frame structure was nearly the same with FVD frame scheme, the displacement demand of FVD scheme was larger than that of SCVD scheme. The SCVD can be used for seismic strengthening of frame structures in high seismic intensity area, which has better aseismic performance compared with those of FVD.

Key words: frame structure, seismic strengthen, self-centering viscous damper, mechanics model, simplified analysis method

中图分类号: 

  • TU391

图1

自复位黏滞阻尼器构造"

表1

自复位黏滞阻尼器分析模型参数"

名义油缸压力p0/MPa预压力荷载F0/kN初始摩擦力Fmin/kN恢复力割线刚度K0/(kN·mm-1
29.044.42.62.1
72.5111.26.72.7
116.0177.910.73.0

图2

72.5 MPa初始油缸压力试验和模拟结果"

图3

72.5 MPa初始油缸压力阻尼力4个分量的模拟结果"

图4

72.5 MPa初始油缸压力自复位阻尼器与普通阻尼器的模拟结果"

表2

普通阻尼器和自复位黏滞阻尼器比较"

项目普通阻尼器自复位阻尼器
最大阻尼力/kN累积能量耗散/(kN·mm)等效黏滞阻尼最大阻尼力/kN累积能量耗散/(kN·mm)等效黏滞阻尼
准静态-50 mm138.51 866.40.043256.93 199.80.040
2.0 Hz-40 mm154.111 482.20.296278.412 655.80.181

图5

所分析系统的性能示意图"

表3

框架结构和普通阻尼器和自复位黏滞阻尼器参数"

参数数值
Rμ12345
Te/s0.20.50.751.01.52.03.0
βV0.10
F0/Fy0.20

表4

近断层地震波特征参数"

编号名称年份站点震级场地类型峰值加速度/g峰值速度/(cm·s-1
1Imperial Valley-061979Agrarias6.53D0.287334.92
2Loma Prieta1989Saratoga-Aloha Ave6.93C0.307926.42
3Landers1992Yermo Fire Station7.28D0.169041.80

图6

规范设计地震反应谱"

图7

规范地震反应谱和调整后的地震地面运动反应谱"

图8

波1作用下自复位阻尼器框架的地震响应"

图9

波1作用下普通阻尼器框架的地震响应"

图10

简化分析与时程分析结果比较"

1 王社良. 抗震结构设计[M]. 4. 武汉:武汉理工大学出版社, 2011.
2 许卫晓, 程扬, 杨伟松, 等. RC框架-抗震墙并联结构体系拟静力试验[J]. 吉林大学学报:工学版, 2021, 51(1): 268-277.
Xu Wei-xiao, Cheng Yang, Yang Wei-song, et al. Quasi-static test of RC frame-seismic wall dual structural system[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 268-277.
3 潘鹏, 叶列平, 钱稼茹, 等. 建筑结构消能减震设计与案例[M]. 北京: 清华大学出版社, 2014.
4 龚宇伟, 布占宇. 黏滞阻尼器在框架结构抗震加固中的应用研究[J]. 施工技术,2019,48(15): 25-28.
Gong Yu-wei, Bu Zhan-yu. Application research of viscous damper in seismic strengthening for frame structures[J]. Construction Technology, 2019, 48(15): 25-28.
5 江辉,李新,白晓宇.桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报:工学版, 2023, 53(6): 1550-1565.
Jiang Hui, Li Xin, Bai Xiao-yu. Review on development of bridge seismic structural systems: from ductility to resilience[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1550-1565.
6 翁大根, 卢著辉, 徐斌, 等. 粘滞阻尼器力学性能试验研究[J]. 世界地震工程, 2002, 18(4): 30-34.
Weng Da-gen, Lu Zhu-hui, Xu Bin, et al. The experimental study on property of energy dissipation of viscous liquid damper[J]. World Earthquake Engineering, 2002, 18(4): 30-34.
7 陈通, 翁大根, 胡岫岩, 等. 考虑近断层地震的隔震结构增设黏滞阻尼器效果分析[J]. 结构工程师, 2013, 29(1): 92-99.
Chen Tong, Weng Da-gen, Hu Xiu-yan, et al. Analysis of an base-isolated structure with viscous dampers to near-fault ground motions[J]. Structural Engineers, 2013, 29(1): 92-99.
8 翁大根. 消能减震结构理论分析与试验验证及工程应用[D]. 上海: 同济大学土木工程学院, 2006.
Weng Da-gen. Theoretical analysis and test verification and practice for the structures with energy dissipation device[D]. Shanghai: School of Civil Engineering, Tongji University, 2006.
9 Dargush G F, Sant R S. Evolutionary aseismic design and retrofit of structures with passive energy dissipation[J]. Earthquake Engineering and Structural Dynamics, 2005, 34: 1601-1626.
10 Lavan O, Levy R. Optimal design of supplemental viscous damper for linear framed structures[J]. Earthquake Engineering and Structural Dynamics, 2006, 35: 337-356.
11 Sellemah A A, Constantinou M C. Investigation of seismic response of buildings with linear and nonlinear fluid viscous dampers[R]. Technical Report NCEER-97-0004, United States: State University of New York at Buffalo, 1997.
12 Ramirez O M, Constantinou M C, Kircher C A, et al. Development and evaluation of simplified procedures for analysis and design of buildings with passive energy dissipation systems[R]. Technical Report MCEER-00-0010, Revision 1, United States: State University of New York at Buffalo, 2001.
13 布占宇, 龚宇伟, 刘婧涵, 等. 一种粘滞阻尼器[P]. 中国.
14 Kitayama S, Constantinou M C. Development and evaluation of procedures for analysis and design of buildings with fluidic self-centering systems[R]. Technical Report MCEER-16-0003, United States: State University of New York at Buffalo, 2016.
15 (2016版). 建筑抗震设计规范 [S].
[1] 田国红,代鹏杰. 基于单亲遗传算法的无人驾驶汽车主动避撞方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2404-2409.
[2] 肖阳,王洁,刘孟军,杨发庆,张天瑶,兰巍. 质子交换膜燃料电池气体扩散层的力学改进模型[J]. 吉林大学学报(工学版), 2022, 52(9): 2147-2155.
[3] 陈伟宏,陈艳,洪秋榕,崔双双,颜学渊. BRBs加固震损装配式混凝土框架结构抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1817-1825.
[4] 孙健,彭斌,朱兵国. 新型无油涡旋压缩机内部热力学特性和性能测试[J]. 吉林大学学报(工学版), 2022, 52(12): 2778-2787.
[5] 王新彦,江泉,吕峰,易政洋. 基于参数化模型的零转弯半径割草机侧翻稳定性[J]. 吉林大学学报(工学版), 2021, 51(5): 1908-1918.
[6] 李洪雪,李世武,孙文财,王琳虹,杨志发. 考虑垂向⁃侧向运动的半挂列车动力学建模及分析[J]. 吉林大学学报(工学版), 2021, 51(2): 549-556.
[7] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[8] 王秀振,钱永久,邵长江,宋帅. 考虑楼层相关性的框架结构地震易损性分析[J]. 吉林大学学报(工学版), 2020, 50(1): 202-209.
[9] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[10] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[11] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[12] 王倩, 赵丁选, 赵颖, 陈娜. 舰载直升机复杂舰面上的动力学分析[J]. 吉林大学学报(工学版), 2017, 47(4): 1109-1113.
[13] 董超, 成凯, 胡康乐, 胡文强. 全地形铰接式履带车辆俯仰运动性能[J]. 吉林大学学报(工学版), 2017, 47(3): 827-836.
[14] 舒浩, 史江义, 马佩军, 潘伟涛, 杨林安. 基于花环网络的偏转直通片上网络框架结构[J]. 吉林大学学报(工学版), 2017, 47(3): 988-995.
[15] 高振海, 高菲, 胡宏宇, 何磊, 兰巍, 程悦. 车辆驾乘人员不同坐姿时腰腹部骨肌力学特性分析[J]. 吉林大学学报(工学版), 2017, 47(1): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .