吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (12): 3367-3378.doi: 10.13229/j.cnki.jdxbgxb.20220075

• 车辆工程·机械工程 • 上一篇    

阀套交叉孔磨粒流精密加工质量分析

郭静1(),桂林1,侯威1,李俊烨2(),朱志宝2,孙立伟2   

  1. 1.中国北方车辆研究所 车辆传动重点实验室,北京 100072
    2.长春理工大学 跨尺度微纳制造教育部重点实验室,长春 130022
  • 收稿日期:2022-01-18 出版日期:2023-12-01 发布日期:2024-01-12
  • 通讯作者: 李俊烨 E-mail:jjxiong@yeah.net;ljy@cust.edu.cn
  • 作者简介:郭静(1983-),女,研究员,硕士.研究方向:车辆传动.E-mail:jjxiong@yeah.net
  • 基金资助:
    基础研究项目(20195208003)

Quality analysis of abrasive flow precision machining of cross hole of valve sleeve

Jing GUO1(),Lin GUI1,Wei HOU1,Jun-ye LI2(),Zhi-bao ZHU2,Li-wei SUN2   

  1. 1.Key Laboratory of Vehicle Transmission,China North Vehicle Research Institute,Beijing 100072,China
    2.Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2022-01-18 Online:2023-12-01 Published:2024-01-12
  • Contact: Jun-ye LI E-mail:jjxiong@yeah.net;ljy@cust.edu.cn

摘要:

采用磨粒流精密加工方法对阀套交叉孔进行去毛刺处理,通过大涡模拟的方法和合理的亚格子模型对阀套工件在侧孔出流条件下进行数值模拟分析。在不同流速和黏度情况下,分析了流体应变率、速度矢量、壁面剪切力对交叉孔边缘圆角半径大小、毛刺去除以及径向孔壁面加工质量的影响。试验结果表明:流体黏度越低、速度越大,交叉孔边缘圆角半径越大;黏度越高、速度越大,径向孔壁面加工质量越高;为保证交叉孔边缘有较小的圆角,应选用低速、高黏流体进行阀套交叉孔的精密加工。

关键词: 机械制造工艺与设备, 磨粒流精密加工, 阀套交叉孔, 去毛刺, 质量分析

Abstract:

The abrasive flow precision machining method was used to deburr the cross hole of the valve sleeve. Through the large eddy simulation method and the reasonable sub-grid model, the numerical simulation analysis was carried out for the valve sleeve workpiece under the condition of side hole outflow. Under the condition of different flow velocities and viscosity, the effects of fluid strain rate, velocity vector, and wall shear force on the fillet radius of cross-hole edge, burr removal, and radial hole wall processing quality were analyzed. The experimental results show that the lower the fluid viscosity and the higher the speed, the larger the fillet radius of the edge of the cross hole, the higher the viscosity and the speed, and the higher the processing quality of the radial hole wall. To ensure that the edge of the cross hole has a small fillet, the low-speed and high viscosity fluid should be selected for the precision processing of the cross hole of the valve sleeve.

Key words: machinery manufacturing technology and equipment, abrasive flow precision machining, valve sleeve cross hole, burr removal, quality analysis

中图分类号: 

  • TH161.1

图1

磨粒流微切削过程"

图2

磨粒与工件接触模型"

图3

阀套零件具体尺寸"

图4

流道结构剖面及区域划分"

图5

实际加工零件"

图6

数据点示意图"

图7

不同黏度下速度云图"

图8

不同黏度下应变率云图"

表1

不同黏度交叉孔边缘应变率数据 (105s-1)"

黏度/

(Pa·s)

径向孔1径向孔2径向孔3
点1点2点3点4点5点6
0.0451.0540.9461.0471.0181.0601.145
0.10.9680.8430.9490.8820.9601.002
0.150.9340.8070.9240.8290.9040.957

图9

不同黏度交叉孔边缘应变率三维曲面图"

图10

不同黏度壁面剪切力云图"

表2

不同黏度壁面剪切力数据 (Pa)"

黏度/ (Pa·s)径向孔1径向孔2径向孔3
0.0451 69433 7631 43321 2774 40916 188
0.120636 7765 48729 90710 86019 326
0.1590837 7785 88233 24913 81521 571

图11

不同黏度壁面剪切力三维曲面图"

图12

不同入口速度下的磨粒流速度云图"

表3

交叉孔边缘附近速度数据"

速度/

(m·s-1

径向孔1径向孔2径向孔3
点7点8点9点10点11点12
34.861.854.462.593.863.79
46.542.516.033.605.325.16
58.193.177.644.636.846.64

图13

交叉孔边缘附近速度三维曲面图"

图14

速度矢量图"

图15

不同速度下应变率云图"

表4

不同速度交叉孔边缘应变率数据表 (104s-1)"

速度/

(m·s-1

径向孔1径向孔2径向孔3
点1点2点3点4点5点6
34.774.104.844.304.764.97
47.046.157.158.587.157.46
59.428.499.739.139.8910.18

图16

不同速度交叉孔边缘应变率三维曲面图"

图17

不同速度下壁面剪切力云图"

表5

不同速度径向孔左右壁面剪切力数据表 (Pa)"

速度/

(m·s-1

径向孔1径向孔2径向孔3
31 07716 3633 34712 6226 7389 071
41 24023 4072 93616 6247 44611 273
51 44230 4221 13919 7546 46312 373

图18

不同速度径向孔左右壁面剪切力三维曲面图"

表6

全因子试验设计"

样件标号速度/(m·s-1黏度/(Pa·s)
21#30.15
22#50.15
23#50.045
24#30.045

表7

粗糙度汇总表"

测量位置粗糙度/μm测量位置粗糙度/μm
原件左0.171样件22#右0.043
原件右0.177样件23#左0.074
样件21#左0.061样件23#右0.069
样件21#右0.063样件24#左0.104
样件22#左0.041样件24#右0.096

图19

磨粒流加工前、后径向孔3扫描电镜数据图"

图20

磨粒流加工前径向孔宏观形貌图"

图21

磨粒流加工后径向孔宏观形貌图"

1 孙振贵, 邢天羿, 邵铭, 等. 超精密阀套内孔的珩磨工艺研究[J]. 航空精密制造技术,2019,55(2):53-56.
Sun Zhen-gui, Xing Tian-yi, Shao Ming, et al. Honing process research about ultra-precision valve sleeve bore[J]. Aviation Precision Manufacturing Technology, 2019, 55(2): 53-56.
2 朱西薇, 车飞, 方兵, 等. 电液伺服阀自动化配研磨技术研究[J]. 液压气动与密封, 2020, 40(3): 80-84.
Zhu Xi-wei, Che Fei, Fang Bing, et al. Research on auto-matching grinding technology of electro-hydraulic servo valve[J]. Hydraulics Pneumatics & Seals, 2020, 40(3): 80-84.
3 张静, 朱春江, 赵龙. 航空精密偶件去毛刺方法的研究[J]. 航空精密制造技术, 2014, 50(2): 54-55.
Zhang Jing, Zhu Chun-jiang, Zhao Long. Research on deburring approach of aviation precision matching parts[J]. Aviation Precision Manufacturing Technology, 2014, 50(2): 54-55.
4 Gillespie L K. Deburring precision miniature parts[J]. Precision Engineering, 1979, 1(4): 189-198.
5 Kotte G. Precision machining: technology and machine development and improvement[J]. Precision Engineering, 2012, 15(4): 455-460.
6 Fu Y, Gao H, Yan Q, et al. Rheological characterisation of abrasive media and finishing behaviours in abrasive flow machining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7): 3569-3580.
7 Kumar S S, Hiremath S S. A review on abrasive flow machining (AFM)[J]. Procedia Technology, 2016, 25: 1297-1304.
8 Cheema M S, Venkatesh G, Dvivedi A, et al. Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(12): 1951-1962.
9 Fu Y, Gao H, Yan Q, et al. An efficient approach to improving the finishing properties of abrasive flow machining with the analyses of initial surface texture of workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5): 2417-2432.
10 Suzuki H, Ohashi K. Special issue on precision abrasive technology of difficult-to-machine materials[J]. International Journal of Automation Technology, 2018, 12(6): 861.
11 Dixit N, Sharma V, Kumar P. Research trends in abrasive flow machining: a systematic review[J]. Journal of Manufacturing Processes, 2021, 64: 1434-1461.
12 Kim K J, Kim Y G, Kim K H. Characterization of deburring by abrasive flow machining for AL6061[J]. Applied Sciences, 2022, 12(4): No. 2048.
13 Li Jun-ye, Zhu Zhi-bao, Hu Jing-lei, et al. Particle collision-based abrasive flow mechanisms in precision machining[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(7): 1819-1831.
14 李俊烨, 胡敬磊, 杨兆军, 等. 离散相磨粒粒径对磨粒流研抛共轨管质量的影响[J]. 吉林大学学报:工学版, 2018, 48(2): 492-499.
Li Jun-ye, Hu Jing-lei, Yang Zhao-jun, et al. Effect on the quality of abrasive flow polishing the common rail pipe in size of discrete phase abrasive particle[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 492-499.
15 Li Jun-ye, Meng Wen-qing, Dong Kun, et al. Numerical analysis of solid-liquid two-phase abrasive flow in microcutting polycrystalline materials based on molecular dynamics[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(11): 1597-1610.
16 Wei H, Peng C, Gao H, et al. On establishment and validation of a new predictive model for material removal in abrasive flow machining[J]. International Journal of Machine Tools and Manufacture, 2019, 138: 66-79.
17 Guo J, Song C, Fu Y, et al. Internal surface quality enhancement of selective laser melted inconel 718 by abrasive flow machining[J]. Journal of Manufacturing Science and Engineering, 2020, 142(10): No. 101003.
18 Yuan Q, Qi H, Wen D. Numerical and experimental study on the spiral-rotating abrasive flow in polishing of the internal surface of 6061 aluminium alloy cylinder[J]. Powder Technology, 2016, 302: 153-159.
19 Furumoto T, Ueda T, Amino T, et al. A study of internal face finishing of the cooling channel in injection mold with free abrasive grains[J]. Journal of Materials Processing Technology, 2011, 211(11): 1742-1748.
20 李俊烨, 朱旭, 杨兆军, 等. 固液两相磨料流的微小孔精密研抛行为[J].吉林大学学报: 工学版, 2020, 50(3): 903-913.
Li Jun-ye, Zhu Xu, Yang Zhao-jun, et al. Micro-hole precision grinding and polishing behavior of solid-liquid two-phase abrasive flow[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 903-913.
21 李忠新. 精密复杂微小型构件车铣复合加工技术研究[D]. 北京: 北京理工大学机械与车辆学院, 2014.
Li Zhong-xin. Research on turning and milling compound machining technology of precise and complex micro-miniature components[D]. Beijing: School of Machinery and Vehicles, Beijing Institute of Technology, 2014.
[1] 马芳武,陈实现,韩露,梁鸿宇,蒲永锋. 金属表面特征与金属⁃塑料直接连接强度的相关性[J]. 吉林大学学报(工学版), 2019, 49(3): 816-821.
[2] 寇淑清, 石舟. 裂解连杆接合面三维重构及其强度与刚度[J]. 吉林大学学报(工学版), 2018, 48(5): 1515-1523.
[3] 李俊烨, 胡敬磊, 杨兆军, 张心明, 周曾炜. 离散相磨粒粒径对磨粒流研抛共轨管质量的影响[J]. 吉林大学学报(工学版), 2018, 48(2): 492-499.
[4] 陈超, 赵升吨, 崔敏超, 韩晓兰, 范淑琴, 石田徹. AL5052铝合金板平压重塑形连接试验[J]. 吉林大学学报(工学版), 2017, 47(5): 1512-1518.
[5] 郎利辉, 阚鹏, 王耀, 孙志莹, 张泉达. 铝合金板材三向应力状态下的成形性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1527-1533.
[6] 张鹏, 寇淑清, 赵勇, 林宝君. 装配式凸轮轴三点式轴向滚花过程[J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
[7] 王犇, 王晓力. 硅微球轴承关键工艺[J]. 吉林大学学报(工学版), 2016, 46(3): 824-830.
[8] 郭哲锋, 汤文成. 杯形件二次拉深的应力分析[J]. 吉林大学学报(工学版), 2016, 46(2): 494-499.
[9] 滕菲, 刘博, 张万喜, 高嵩. 柔性三维拉弯成形工艺稳健设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1481-1487.
[10] 寇淑清, 张鹏, 韩广秘, 杨慎华. 装配式凸轮轴多道次扩径联接工艺[J]. 吉林大学学报(工学版), 2014, 44(2): 398-403.
[11] 寇淑清, 杨宏宇, 高岩, 杨慎华. 裂解连杆断裂结合面缺损面积定量描述与分析[J]. 吉林大学学报(工学版), 2013, 43(06): 1541-1545.
[12] 洪肇斌, 杨兆军, 张学成, 王佰超. 基于齿面发生线的弧齿锥齿轮铣削加工仿真分析[J]. 吉林大学学报(工学版), 2013, 43(02): 334-339.
[13] 宋占杰, 张美, 何改云, 刘佩佩. 基于质心Voronoi结构的自由曲面布点策略[J]. 吉林大学学报(工学版), 2013, 43(01): 34-38.
[14] 李松生, 赵燕伟, 顾熙仁. 改进的FUP算法在五金产品质量分析系统中的应用[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 251-254.
[15] 张雷, 耿伟强, 鲍勇吉, 赵继. 用于羟基磷灰石冷喷涂的超声波送粉系统[J]. , 2012, (06): 1402-1408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!