吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 400-409.doi: 10.13229/j.cnki.jdxbgxb.20220337

• 材料科学与工程 • 上一篇    

碳纤维复合材料层合板三点弯曲疲劳性能

许良1(),肖景厚1,宋万万2,周松1()   

  1. 1.沈阳航空航天大学 机电工程学院,沈阳 110136
    2.沈阳飞机工业(集团)有限公司53厂,沈阳 110034
  • 收稿日期:2022-06-20 出版日期:2024-02-01 发布日期:2024-03-29
  • 通讯作者: 周松 E-mail:sysyxu@163.com;zhousong23@163.com
  • 作者简介:许良(1965-),男,教授,博士.研究方向:航空材料与结构强度.E-mail:sysyxu@163.com
  • 基金资助:
    国家自然科学基金项目(51775355)

Three⁃point bending fatigue properties of carbon fiber composite laminates

Liang XU1(),Jing-hou XIAO1,Wan-wan SONG2,Song ZHOU1()   

  1. 1.School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136,China
    2.Factory 53,Shenyang Aircraft Corporation,Shenyang 110034,China
  • Received:2022-06-20 Online:2024-02-01 Published:2024-03-29
  • Contact: Song ZHOU E-mail:sysyxu@163.com;zhousong23@163.com

摘要:

对3种不同厚度的T700碳纤维复合材料多向层合板在2种应力比及3种应力等级下进行三点弯曲试验,对其三点弯曲静态与疲劳性能进行分析。采用不同方式对破坏后形貌进行观察。结果显示:材料厚度的增加使试样弯曲强度与模量增加,复合材料多向层合板的三点弯曲疲劳寿命与材料厚度成正比关系,与试验应力比、应力等级成反比关系。试样最终的疲劳破坏程度与疲劳寿命有关,疲劳循环数越多,层合板在横向和纵向的破坏越剧烈。同时,试样厚度越大,分层现象越明显,同时存在纤维拔出现象。

关键词: 复合材料, 三点弯曲, 弯曲疲劳, 破坏形貌, 疲劳性能

Abstract:

In this paper, three-point bending tests of T700 carbon fiber composite multi-directional laminates with different thicknesses are carried out under two stress ratios and three stress levels, and the static and fatigue properties of three-point bending are analyzed. The morphology after damage was observed in different ways. The results show that the increase of material thickness increases the flexural strength and modulus of the specimen, and the three-point bending fatigue life of composite multi-directional laminates is proportional to the material thickness, and inversely proportional to the test stress ratio and stress level. The final fatigue failure degree of the sample is related to the fatigue life, the higher the number of fatigue cycles, the more severe the damage in the transverse and longitudinal directions of the plywood. At the same time, the greater the thickness of the sample, the more obvious the delamination phenomenon, and the phenomenon of fiber pull out.

Key words: composite material, three point bending, bending fatigue, destroy the shape, fatigue performance

中图分类号: 

  • TB332

表1

三种层合板尺寸"

试样长/mm宽/mm厚/mm
2 mm厚度8412.52.0
2.4 mm厚度8412.52.4
7 mm厚度27015.07.0

图1

静态三点弯曲试验示意图"

图2

三点弯曲疲劳试验示意图"

图3

静态弯曲试验过程曲线"

图4

静态弯曲试验结果"

表2

不同厚度试样疲劳寿命均值"

2 mm厚度试样2 mm加厚试样7 mm试样
应力比应力等级平均寿命应力比应力等级平均寿命应力比应力等级平均寿命
0.596% UTS10 6460.0665% UTS17 5170.0694% UTS27 834
92% UTS14 17963% UTS12 74988% UTS34 242
90% UTS146 04260% UTS201 90182% UTS143 660
0.698% UTS20330.168% UTS18060.198% UTS8942
96% UTS30 45565% UTS14 77094% UTS37 931
94% UTS240 38660% UTS32 31990% UTS69 078

图5

弯曲疲劳试验结果"

图6

疲劳S-N曲线"

图7

层合板表面破坏形貌"

图8

层合板侧偏破坏形貌分析"

图9

层合板疲劳破坏的SEM观察"

1 王育虔,刘展,杜金强.高应力水平下T700/MTM46复合材料层合板拉-拉疲劳性能研究[J].玻璃钢/复合材料,2019(4):31-36.
Wang Yu-qian, Liu Zhan, Du Jin-qiang. Study on the tension-tension fatigue properties of T700/Mtm46 composite laminates under high stress level[J]. Fiber Reinforced Plastics/Composites, 2019(4): 31-36.
2 Mouritz A P, Gellert E, Burchill P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53(1): 21-42.
3 Dvorak G J. Composite materials: inelastic behavior, damage, fatigue and fracture[J]. International Journal of Solids and Structures, 2000, 37(1/2): 155-170.
4 Belísio A S, Freire Júnior R C S. Comparative study between the PNL method and a MN in modelling fatigue of composite materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(5): 392-400.
5 Song W, Fan W, Liu T, et al. Flexural fatigue properties and failure propagation of 3D stitched composites under 3-point bending loading[J]. International Journal of Fatigue, 2021, 153: 106507.
6 Qi H Y, Wen W D, Sun L W. Fatigue damage accumulation model based on stiffness degradation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12): 1200-1203.
7 D'Amore A, Giorgio M, Grassia L. Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading[J]. International Journal of Fatigue, 2015, 78: 31-37.
8 Li D, Dang M, Jiang L. Fatigue behavior and failure mechanisms of 3D angle-interlock woven composite at room and cryogenic temperatures under bending[J]. Composites Communications, 2021, 23: 100559.
9 Meng M Z, Le H R, Grove S, et al. Moisture effects on the bending fatigue of laminated composites[J]. Composite Structures, 2016, 154: 49-60.
10 叶辉,李清原,闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报: 工学版, 2020, 50(3): 920-928.
Ye Hui, Li Qing-yuan, Yan Kang-kang. Mechanical properties of variable⁃stiffness carbon fiber composite laminates[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 920-928.
11 Klesnil M, Lukác P. Fatigue of Metallic Materials[M]. Amsterdam: Elsevier, 1992.
12 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002.
13 Yee A F. Modifying Matrix Materials for Tougher Composites[M]. West Conshohocken: ASTM International, 1987.
14 Talreja R. Fatigue of composite materials: damage mechanisms and fatigue-life diagrams[J]. Mathematical and Physical Sciences, 1981, 378: 461-475.
15 Barron V, Buggy M, McKenna N H. Frequency effects on the fatigue behaviour on carbon fiber reinforced polymer laminates[J]. Journal of Materials Science, 2001, 36(7): 1755-1761.
16 Kawai M, Takeuchi H, Taketa I, et al. Effects of temperature and stress ratio on fatigue life of injection molded short carbon fiber-reinforced polyamide composite[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 9-24.
17 Zhang W, Zhou Z, Zheng P, et al. The fatigue damage mesomodel for fiber-reinforced polymer composite lamina[J]. Journal of Reinforced Plastics and Composites, 2014, 33(19): 1783-1793.
18 Kawai M, Yang K, Oh S. Effect of alternating R-ratios loading on fatigue life of woven fabric carbon/epoxy laminates[J]. Journal of Composite Materials, 2015, 49(27): 3387-3405.
19 Mouritz A P. Structural properties of z-pinned carbon-epoxy T-joints in hot-wet environment[J]. Journal of Composite Materials, 2014, 48(23): 2905-2914.
20 王蔓, 李泽成, 白瑞祥. 复合材料格栅加筋板的分层扩展特性[J]. 吉林大学学报: 工学版, 2007, 37(1): 229-233.
Wang Man, Li Ze-cheng, Bai Rui-xiang. Delamination growth characteristics for composite grid stiffened plates[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(1): 229-233.
21 Alam P, Mamalis D, Robert C, et al. The fatigue of carbon fibre reinforced plastics—a review[J]. Composites Part B: Engineering, 2019, 166: 555-579.
[1] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[2] 车佳玲,王俊,刘海峰,张居平. 沙漠砂制备高韧性水泥基复合材料在不同环境下的自愈合性能[J]. 吉林大学学报(工学版), 2023, 53(8): 2277-2286.
[3] 许良,边钰博,周松,肖景厚. 高温水浸对T800/环氧树脂基复合材料性能的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1943-1950.
[4] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[5] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[6] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[7] 李伟,宋海生,陆浩宇,史文库,王强,王晓俊. 复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报(工学版), 2022, 52(4): 829-836.
[8] 庄蔚敏,陈沈,吴迪. 碳纤维增强复合材料包裹强化形式对钢管横向冲击性能的影响[J]. 吉林大学学报(工学版), 2022, 52(4): 819-828.
[9] 王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2542-2548.
[10] 于开锋,何小玲,李俊涛,梁策. 玄武岩纤维对不饱和聚酯树脂复合材料的增韧[J]. 吉林大学学报(工学版), 2022, 52(10): 2300-2306.
[11] 卫宇璇,张明,刘佳,刘硕,路明雨,王洪雨. 基于模态缺陷的变刚度复合材料圆柱壳屈曲特性[J]. 吉林大学学报(工学版), 2022, 52(1): 91-100.
[12] 秦拥军,陈楠,蔺鹏杰,于江. 掺锂渣再生混凝土三点弯曲梁双K断裂特性[J]. 吉林大学学报(工学版), 2021, 51(6): 2121-2127.
[13] 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120.
[14] 严庆光,冯梓轩,李湘吉,王瑛玮. 一机六件等应力三点弯曲疲劳试验机的研制[J]. 吉林大学学报(工学版), 2021, 51(6): 2013-2020.
[15] 佟金,高子博,霍超,王子阳,马云海,常志勇. 低温下铜纳米颗粒对UHMWPE复合材料摩擦磨损性能影响[J]. 吉林大学学报(工学版), 2021, 51(2): 493-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!