吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1411-1417.doi: 10.13229/j.cnki.jdxbgxb.20220547
• 交通运输工程·土木工程 • 上一篇
Hai-bin WEI1(),Shuan-ye HAN1,Hai-peng BI1(),Qiong-hui LIU2,Zi-peng MA1
摘要:
为解决道路冰雪的问题,研制了智能感知道路主动除冰雪系统。介绍了导电橡胶复合材料的制备方法,通过室外试验确定了融雪效果,而且构建了相应的有限元模型,将主动融冰雪系统用于工程且确定了智能感知系统的阈值。结果表明,14 V电压和-8 °C条件下导电橡胶在3.17 h融化路面20 mm雪厚,可以实现低电压下快速融雪。室外试验验证了有限元模型的准确性,感知系统表明智能感知主动除冰雪系统能及时除去道路冰雪。
中图分类号:
1 | Ozsoy A, Yildirim R. Prevention of icing with ground source heat pipe: a theoretical analysis for Turkey's climatic conditions[J]. Cold Regions Science and Technology, 2016, 125(5): 65-71. |
2 | Mirzanamadi R, Hagentoft C E, Johansson P, et al. Anti-icing of road surfaces using Hydronic Heating Pavement with low temperature[J]. Cold Regions Science and Technology, 2018, 145(1): 106-118. |
3 | Sassani A, Ceylan H, Kim S, et al. Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete[J]. Construction and Building Materials, 2017, 152(10): 168-181. |
4 | Mohammed A G, Ozgur G, Sevkat E. Electrical resistance heating for deicing and snow melting applications: experimental study[J]. Cold Regions Science and Technology, 2019, 160(4): 128-138. |
5 | Tuan C Y. Roca spur bridge: the implementation of an innovative deicing technology[J]. Journal of Cold Regions Engineering, 2008, 22(3): 1-15. |
6 | Fulham-Lebrasseur R, Sorelli L, Conciatori D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions[J]. Construction and Building Materials, 2020, 237(3): 117470. |
7 | Pamulapati Y, Elseifi M A, Cooper S B, et al. Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers[J]. Construction and Building Materials, 2017, 146(8): 66-75. |
8 | Ragnarsson A. Geothermal development in iceland 1995-1999[C]//. Proceedings Word Geothermal Congress, Bali, Indonesia, 2000, 1-12. |
9 | Liu X, Rees S J, Spitler J D. Modeling snow melting on heated pavement surfaces. Part I: model development[J]. Applied Thermal Engineering, 2007, 27(4): 1115-1124. |
10 | 吴少鹏, 磨炼同, 水中和, 等.导电沥青混凝土的制备研究[J].武汉理工大学学报: 交通科学与工程版, 2002(5): 567-570. |
Wu Shao-peng, Mo Lian-tong, Shui Zhong-he, et al. Preparation and research of electrically conductive asphalt concrete[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2002(5): 567-570. | |
11 | 谭忆秋, 张驰, 徐慧宁, 等.主动除冰雪路面融雪化冰特性及路用性能研究综述[J].中国公路学报, 2019, 32(4): 1-17. |
Tan Yi-qiu, Zhang Chi, Xu Hui-ning, et al. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 1-17. | |
12 | 李荣清, 王超, 朱耀庭, 等.碳纤维发热线桥面铺装融雪化冰试验研究[J].中外公路, 2019, 39(6): 241-244. |
Li Rong-qing, Wang Chao, Zhu Yao-ting, et al. Experimental study on snow and ice melting on carbon fibre hot wire bridge deck paving[J]. Journal of China & Foreign Highway, 2019, 39(6): 241-244. | |
13 | 张强强. 基于碳纳米纤维纸高效热源的路面自融雪化冰系统的研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2012. |
Zhang Qiang-qiang. The investigation of self-deicing and snow-melting system of CNFP-base high-efficient thermal source[D]. Harbin: College of Civil Engineering, Harbin Institute of Technology, 2012. | |
14 | 谭忆秋, 侯明昊, 单丽岩, 等. 蓄盐沥青路面缓释络合盐填料的研制[J]. 建筑材料学报, 2014, 17(2): 256-260. |
Tan Yi-qiu, Hou Ming-hao, Shan Li-yan, et al. Development of sustained release complex salt filler for asphalt pavement included salt[J]. Journal of Building Materials, 2014, 17(2): 256-260. | |
15 | 叶罕, 袁铜森. 超薄导电磨耗层除冰系统除冰工程应用[J]. 湖南交通科技, 2017, 43(2): 228-230. |
Ye Han, Yuan Tong-sen.Ultra-thin conductive abrasive layer deicing system and engineering applications[J]. Hunan Communication Science and Technology, 2017, 43(2): 228-230. | |
16 | Wei H, Ma Z, Han L, et al. Durability of conductive ethylene-propylene-diene monomer rubber composite with active deicing and snow melting under vehicle load[J]. Journal of Materials in Civil Engineering, 2022, 34(5): 04022055. |
17 | 张朝晖. ANSYS热分析教程与实例解析[M]. 北京: 中国铁道出版社, 2007. |
18 | Rees S J, Spitler J D, Xiao X. Transient analysis of snow-melting system performance[J]. Ashrae Transactions, 2002, 2(2): 406-423. |
[1] | 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389. |
[2] | 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121. |
[3] | 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972. |
[4] | 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132. |
[5] | 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537. |
[6] | 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530. |
[7] | 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244. |
[8] | 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393. |
[9] | 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374. |
[10] | 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403. |
[11] | 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595. |
[12] | 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549. |
[13] | 孙健,彭斌,朱兵国. 新型无油涡旋压缩机内部热力学特性和性能测试[J]. 吉林大学学报(工学版), 2022, 52(12): 2778-2787. |
[14] | 叶奋,胡诗园. 考虑旧水泥路面接缝传荷能力的超薄罩面力学特性[J]. 吉林大学学报(工学版), 2022, 52(11): 2636-2643. |
[15] | 于晓贺,罗蓉,柳子尧,黄婷婷,束裕. 沥青路面典型裂缝湿度场数值模拟[J]. 吉林大学学报(工学版), 2022, 52(10): 2343-2351. |
|