吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1411-1417.doi: 10.13229/j.cnki.jdxbgxb.20220547

• 交通运输工程·土木工程 • 上一篇    

智能感知道路主动除冰雪系统及实验技术

魏海斌1(),韩栓业1,毕海鹏1(),刘琼辉2,马子鹏1   

  1. 1.吉林大学 交通学院,长春 130022
    2.山东公路技师学院 基础部,济南 253020
  • 收稿日期:2022-05-09 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 毕海鹏 E-mail:weihb@jlu.edu.cn;bihp@jlu.edu.cn
  • 作者简介:魏海斌(1971-),男,教授,博士.研究方向:道路路基冷组层研究和道路智能感知.E-mail:weihb@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20210203041SF)

Intelligent sensing road active ice and snow removal system and experimental technology

Hai-bin WEI1(),Shuan-ye HAN1,Hai-peng BI1(),Qiong-hui LIU2,Zi-peng MA1   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.Basic Department,Shandong College of Highway Technician,Jinan 253020,China
  • Received:2022-05-09 Online:2023-05-01 Published:2023-05-25
  • Contact: Hai-peng BI E-mail:weihb@jlu.edu.cn;bihp@jlu.edu.cn

摘要:

为解决道路冰雪的问题,研制了智能感知道路主动除冰雪系统。介绍了导电橡胶复合材料的制备方法,通过室外试验确定了融雪效果,而且构建了相应的有限元模型,将主动融冰雪系统用于工程且确定了智能感知系统的阈值。结果表明,14 V电压和-8 °C条件下导电橡胶在3.17 h融化路面20 mm雪厚,可以实现低电压下快速融雪。室外试验验证了有限元模型的准确性,感知系统表明智能感知主动除冰雪系统能及时除去道路冰雪。

关键词: 道路工程, 主动除冰雪系统, 数值模拟, 导电橡胶复合材料

Abstract:

Active melting of ice and snow has gradually become an important method to solve the problem of road ice and snow. The preparation method of conductive rubber composites is produced in this paper. The snow melting effect was determined through outdoor experiments. Moreover, the corresponding finite element model was constructed. The active ice and snow melting system was used for engineering and the threshold of intelligent sensing system was determined. The results show that conductive rubber can melt 20 mm snow on the road in 3.17 h at 14 V and -8 ℃, which can realize rapid snow melting at low voltage. The outdoor test verifies the accuracy of the finite element model. The sensing system indicates that the intelligent sensing active ice and snow removal system can remove road ice and snow in time.

Key words: road engineering, active ice and snow removal system, numerical simulation, conductive rubber composite

中图分类号: 

  • U421.4

图1

导电橡胶复合材料的原材料"

图2

导电三元乙丙橡胶复合材料的结构"

图3

智能感知道路主动除冰雪系统"

图4

智能感知及控制系统箱"

表1

有限元模型的材料参数"

结构层密度/ (kg·m-3)比热容/ [J·(kg·°C)-1导热系数/ [W·(m·°C)-1
沥青混凝土21007001.600
传热层115010000.800
隔热层2209000.035
雪层35021000.300

图5

室外试验过程中各结构的温度变化"

图6

数值模拟的温度场分布及结果验证"

1 Ozsoy A, Yildirim R. Prevention of icing with ground source heat pipe: a theoretical analysis for Turkey's climatic conditions[J]. Cold Regions Science and Technology, 2016, 125(5): 65-71.
2 Mirzanamadi R, Hagentoft C E, Johansson P, et al. Anti-icing of road surfaces using Hydronic Heating Pavement with low temperature[J]. Cold Regions Science and Technology, 2018, 145(1): 106-118.
3 Sassani A, Ceylan H, Kim S, et al. Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete[J]. Construction and Building Materials, 2017, 152(10): 168-181.
4 Mohammed A G, Ozgur G, Sevkat E. Electrical resistance heating for deicing and snow melting applications: experimental study[J]. Cold Regions Science and Technology, 2019, 160(4): 128-138.
5 Tuan C Y. Roca spur bridge: the implementation of an innovative deicing technology[J]. Journal of Cold Regions Engineering, 2008, 22(3): 1-15.
6 Fulham-Lebrasseur R, Sorelli L, Conciatori D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions[J]. Construction and Building Materials, 2020, 237(3): 117470.
7 Pamulapati Y, Elseifi M A, Cooper S B, et al. Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers[J]. Construction and Building Materials, 2017, 146(8): 66-75.
8 Ragnarsson A. Geothermal development in iceland 1995-1999[C]//. Proceedings Word Geothermal Congress, Bali, Indonesia, 2000, 1-12.
9 Liu X, Rees S J, Spitler J D. Modeling snow melting on heated pavement surfaces. Part I: model development[J]. Applied Thermal Engineering, 2007, 27(4): 1115-1124.
10 吴少鹏, 磨炼同, 水中和, 等.导电沥青混凝土的制备研究[J].武汉理工大学学报: 交通科学与工程版, 2002(5): 567-570.
Wu Shao-peng, Mo Lian-tong, Shui Zhong-he, et al. Preparation and research of electrically conductive asphalt concrete[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2002(5): 567-570.
11 谭忆秋, 张驰, 徐慧宁, 等.主动除冰雪路面融雪化冰特性及路用性能研究综述[J].中国公路学报, 2019, 32(4): 1-17.
Tan Yi-qiu, Zhang Chi, Xu Hui-ning, et al. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 1-17.
12 李荣清, 王超, 朱耀庭, 等.碳纤维发热线桥面铺装融雪化冰试验研究[J].中外公路, 2019, 39(6): 241-244.
Li Rong-qing, Wang Chao, Zhu Yao-ting, et al. Experimental study on snow and ice melting on carbon fibre hot wire bridge deck paving[J]. Journal of China & Foreign Highway, 2019, 39(6): 241-244.
13 张强强. 基于碳纳米纤维纸高效热源的路面自融雪化冰系统的研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2012.
Zhang Qiang-qiang. The investigation of self-deicing and snow-melting system of CNFP-base high-efficient thermal source[D]. Harbin: College of Civil Engineering, Harbin Institute of Technology, 2012.
14 谭忆秋, 侯明昊, 单丽岩, 等. 蓄盐沥青路面缓释络合盐填料的研制[J]. 建筑材料学报, 2014, 17(2): 256-260.
Tan Yi-qiu, Hou Ming-hao, Shan Li-yan, et al. Development of sustained release complex salt filler for asphalt pavement included salt[J]. Journal of Building Materials, 2014, 17(2): 256-260.
15 叶罕, 袁铜森. 超薄导电磨耗层除冰系统除冰工程应用[J]. 湖南交通科技, 2017, 43(2): 228-230.
Ye Han, Yuan Tong-sen.Ultra-thin conductive abrasive layer deicing system and engineering applications[J]. Hunan Communication Science and Technology, 2017, 43(2): 228-230.
16 Wei H, Ma Z, Han L, et al. Durability of conductive ethylene-propylene-diene monomer rubber composite with active deicing and snow melting under vehicle load[J]. Journal of Materials in Civil Engineering, 2022, 34(5): 04022055.
17 张朝晖. ANSYS热分析教程与实例解析[M]. 北京: 中国铁道出版社, 2007.
18 Rees S J, Spitler J D, Xiao X. Transient analysis of snow-melting system performance[J]. Ashrae Transactions, 2002, 2(2): 406-423.
[1] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[2] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[3] 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972.
[4] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[5] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[6] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[7] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[8] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[9] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[10] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
[11] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[12] 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549.
[13] 孙健,彭斌,朱兵国. 新型无油涡旋压缩机内部热力学特性和性能测试[J]. 吉林大学学报(工学版), 2022, 52(12): 2778-2787.
[14] 叶奋,胡诗园. 考虑旧水泥路面接缝传荷能力的超薄罩面力学特性[J]. 吉林大学学报(工学版), 2022, 52(11): 2636-2643.
[15] 于晓贺,罗蓉,柳子尧,黄婷婷,束裕. 沥青路面典型裂缝湿度场数值模拟[J]. 吉林大学学报(工学版), 2022, 52(10): 2343-2351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!