吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 819-828.doi: 10.13229/j.cnki.jdxbgxb20200939

• 车辆工程·机械工程 • 上一篇    

碳纤维增强复合材料包裹强化形式对钢管横向冲击性能的影响

庄蔚敏(),陈沈,吴迪   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2020-08-18 出版日期:2022-04-01 发布日期:2022-04-20
  • 作者简介:庄蔚敏(1970-),女,教授,博士生导师. 研究方向:车身结构轻量化设计.E-mail: zhuangwm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51775227)

Influence of strengthening form of CFRP on transverse impact performance of steel tube

Wei-min ZHUANG(),Shen CHEN,Di WU   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2020-08-18 Online:2022-04-01 Published:2022-04-20

摘要:

针对碳纤维增强复合材料(CFRP)非全包裹可以在提高钢管性能的前提下实现进一步的轻量化,对CFRP强化钢管进行了横向冲击仿真研究,获得了CFRP包裹钢管的强化形式和尺寸对钢管横向冲击性能的影响规律。基于Hashin复合材料失效准则和Ductile金属失效准则,建立了CFRP全包裹钢管的落锤横向冲击仿真模型并验证模型的有效性。研究CFRP在钢管表面轴向粘贴、冲击侧环向粘贴和冲击侧背面环向粘贴时,CFRP粘贴尺寸与CFRP强化钢管抗冲击性能的关系。进行落锤横向冲击仿真,研究冲击作用下钢管损伤的分布规律,对比不同粘贴长度下强化钢管的最大位移和CFRP的吸能量。结果表明,增大CFRP轴向粘贴尺寸对钢管的强化作用更为明显;当环向全部粘贴、轴向粘贴长度为50%钢管跨距和轴向全部粘贴、环向粘贴长度为87.5%圆管外部周长时,CFRP强化钢管抗冲击性能与CFRP全包裹钢管基本一致。

关键词: 车辆工程, 碳纤维增强复合材料, 强化钢管, 抗冲击

Abstract:

In view of the fact that carbon fiber reinforced polymer(CFRP) partially wrapped steel tube can realize further lightweight on the premise of improving the performance of steel tube, the transverse impact simulation of CFRP reinforced steel tube was carried out, and the influence of strengthening form and size of CFRP wrapped steel tube on the transverse impact performance of steel tube was obtained. Based on the Hashin composite failure criterion and Ductile metal failure criterion, the simulation model of the drop hammer transverse impact of CFRP fully wrapped steel tube was established, and the validity of the model was verified. The relationship between the size of CFRP and the impact strength of steel tube was studied when CFRP was pasted axially on the steel tube surface, circumferentially on the impact side and circumferentially on the back of the impact side. The transverse impact simulation of drop hammer was carried out and the distribution of steel tube damage under impact was studied,the maximum displacement of the strengthened steel tube and the energy absorption of CFRP were compared under different bonding lengths. The results show that the strengthening influence of CFRP axial bonding size is more obvious;the impact resistance of the steel tube strengthened by CFRP is basically the same as that of the steel tube fully wrapped by CFRP, when the length of CFRP is pasted axially half of the span and the full length of the steel tube circumference or the length of CFRP is pasted axially 87.5% of the circumference and full length of span.

Key words: vehicle engineering, carbon fiber reinforced polymer, strengthened steel tube, impact resistance

中图分类号: 

  • TB33

图1

CFRP强化钢管实验试件"

图2

纤维铺设方向0°/90°示意图"

图3

横向冲击仿真模型"

图4

双线性内聚力模型应力位移曲线"

表1

钢管材料参数"

参 数数 值
密度ρ/(kg?m-3)7850
弹性模量E/GPa210
泊松比υ0.3
屈服强度σs/MPa317
拉伸强度σb/MPa366

表2

CFRP材料参数"

参 数数 值
密度ρ/(kg?m-3)1500
纵向弹性模量E1/GPa75
横向弹性模量E2/GPa8.42
12方向剪切模量G12/GPa4.48
13方向剪切模量G13/GPa4.48
23方向剪切模量G23/GPa4
主泊松比υ120.307
纵向拉伸强度Xt/MPa987
纵向压缩强度Xc/MPa500
横向拉伸强度Yt/MPa42
横向压缩强度Yc/MPa172
剪切强度S12/MPa90

表3

粘接剂材料参数"

参 数数 值
密度ρ/(kg?m-3)1400
弹性模量E/GPa3
拉伸强度Nmax/MPa30
剪切强度SmaxTmax/MPa45

图5

CFRP强化钢管破坏形式实验与仿真对比"

图6

仿真与实验圆管截面对比"

表4

实验和仿真圆管截面尺寸对比"

截面尺寸实验/mm仿真/mm误差/%
d115.9104.379.95
d'80.080.130.16

图7

实验与仿真载荷位移曲线对比"

图8

轴向粘贴CFRP增强钢管"

图9

冲击侧粘贴CFRP增强钢管"

图10

冲击侧背面粘贴CFRP增强钢管"

图11

轴向粘贴CFRP时钢管的损伤云图"

图12

轴向粘贴钢管损伤长度"

图13

环向粘贴CFRP时钢管的损伤云图"

图14

环向粘贴钢管损伤长度"

图15

CFRP强化钢管应力云图"

图16

不同轴向粘贴长度的圆管最大位移"

图17

不同轴向粘贴长度的圆管CFRP吸能量和吸能占比"

图18

不同环向粘贴长度的圆管最大位移"

图19

不同环向粘贴长度的圆管CFRP吸能量和吸能占比"

1 Vermeeren C. An historic overview of the development of fibre mental laminates[J]. Applied Composite Materials, 2003, 10(4): 189-205.
2 朱国华, 成艾国, 王振, 等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报, 2016, 52(6): 145-152.
Zhu Guo-hua, Cheng Ai-guo, Wang Zhen, et al. Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J]. Journal of Mechanical Engineering, 2016, 52(6): 145-152.
3 李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44-54.
Li Yong-bing, Li Ya-ting, Lou Ming, et al. Lightweighting of car body and its challenges to joining technologies[J]. Journal of Mechanical Engineering, 2012, 48(18): 44-54.
4 Karbhari V M, Shulley S B. Use of composites for rehabilitation of steel structures-determination of bond durability[J]. Journal of Materials in Civil Engineering, 1995, 7(4): 239-245.
5 Phan V N, Yukihiro M. Experimental analytical and theoretical investigations of CFRP strengthened thin-walled steel plates under shear loads[J]. Thin-Walled Structures, 2020, 155: No. 106908.
6 Chahkand N A, Jumaat M Z, Ramli S N H, et al. Experimental and theoretical investigation on torsional behaviour of CFRP strengthened square hollow steel section[J]. Thin-Walled Structures, 2013, 68: 135-140.
7 钮鹏, 杨刚, 金春福, 等. 几何缺陷影响下的CFRP-方钢管极限承载力解析解[J]. 工程力学, 2015, 32(): 322-326.
Niu Peng, Yang Gang, Jin Chun-fu, et al. Analytical solutions on ultimate bearing capacity of a square CFRP-steel tube member with initial imperfection[J]. Engineering Mechanics, 2015, 32(S1): 322-326.
8 Kim H C, Dong K S, Lee J J. Characteristics of aluminum/CFRP short square hollow section beam under transverse quasi-static loading[J]. Composites Part B: Engineering, 2013, 51: 345-358.
9 Ma Q H, Zha Y B, Dong B Y, et al. Structure design and multi-objective optimization of CFRP /aluminum hybrid crash box[J]. Polymer Composites, 2020, 41(10): 4202-4220.
10 Sha Y Y, Hao H. Laboratory tests and numerical simulations of CFRP strengthened RC pier subjected to barge impact load[J]. International Journal of Structural Stability and Dynamics, 2015, 15(2): No. 1450037.
11 Haider A Z, Riadh A M, Zhao X L. Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads[J]. Composite Structures, 2011, 94(2): 510-518.
12 Alam M I, Fawzia S, Zhao X L, et al. Experimental study on FRP-strengthened steel tubular members under lateral impact[J]. Journal of Composites for Construction, 2017, 21(5): No:04017022.
13 Alam M I, Fawzia S. Numerical studies on CFRP strengthened steel columns under transverse impact[J]. Composite Structures, 2015, 120: 428-441.
14 刘斌, 赵亮, 徐红炉. 基于Hashin失效准则的复合材料螺栓连接损伤破坏研究[J]. 科学技术与工程, 2012, 12(8): 1740-1744.
Liu Bin, Zhao Liang, Xu Hong-lu. The research about damage of composite laminate in bolted joints based on the Hashin failure criteria[J]. Science Technology and Engineering, 2012, 12(8): 1740-1744.
15 吴振, 陈健. 基于Hashin准则的复合材料层合结构低速冲击研究[J]. 沈阳航空航天大学学报, 2017, 34(5): 12-20.
Wu Zhen, Chen Jian. Low-velocity impact damage of composite structure based on Hashin criteria[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2017, 34(5): 12-20.
16 Hashin Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
17 Fanteria D, Lazzeri L, Panettieri E, et al. Experimental characterization of the inter laminar fracture toughness of a woven and a unidirectional carbon/epoxy composite[J]. Composites Science and Technology, 2017, 142: 20-29.
18 Guo Y Q, Saanouin K, Cherouat A, et al. Two methodologies for the simulation of ductile damage in sheet metal forming processes[J]. Journal of Plasticity Engineering, 2002, 43(373): 3227-3237.
19 孟利平, 程远征, 张伦平, 等. 应变率和应力三轴度对Q345B钢动态力学性能的影响研究[J]. 船舶力学, 2019, 23(10): 1210-1220.
Meng Li-ping, Cheng Yuan-zheng, Zhang Lun-ping, et al. Influence of strain rate and stress triaxiality on the dynamic mechanical behavior of Q345B steel[J]. Journal of Ship Mechanics, 2019, 23(10): 1210-1220.
20 杨卓云, 赵长财, 董国疆, 等. 基于Lou-2013韧性断裂准则5182铝板成形极限研究[J]. 机械工程学报, 2019, 55(16): 47-57.
Yang Zhuo-yun, Zhao Chang-cai, Dong Guo-jiang, et al. Forming limit research of 5182 aluminum alloy sheet based on Lou-2013 ductile fracture criterion[J]. Journal of Mechanical Engineering, 2019, 55(16): 47-57.
21 朱浩, 朱亮, 陈剑虹. 应力三轴度和应变率对6063铝合金力学性能的影响及材料表征[J]. 材料科学与工程学报, 2007, 25(3): 358-362.
Zhu Hao, Zhu Liang, Chen Jian-hong. Influence of stress triaxiality and strain rate on the mechanics behavior of 6063 aluminum alloy and material characterization[J]. Journal of Materials Science and Engineering, 2007, 25(3): 358-362.
22 Ranz D, Cuartero J, Castejon L, et al. A cohesive zone model approach to interlaminar behavior of carbon/epoxy laminated curved beams[J]. Composite Structures, 2020, 238: No. 111983.
23 Deng J, Li J, Wang Y, et al. Numerical study on notched steel beams strengthened by CFRP plates[J]. Construction and Building Materials, 2018, 163: 622-633.
24 寇剑锋, 徐绯, 郭家平. 黏聚力模型破坏准则及其参数选取[J]. 机械强度, 2011, 33(5): 714-718.
Kou Jian-feng, Xu Fei, Guo Jia-ping. Damage laws of Cohesive zone model and selection of the parameters[J]. Journal of Mechanical Strength, 2011, 033(5): 14-718.
25 Adams C, Bös J, Slomski E M., et al. Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures[J]. Mechanical Systems and Signal Processing, 2018, 110: 590-610.
[1] 李杰,陈涛,郭文翠,赵旗. 汽车非平稳随机振动空间域虚拟激励法及应用[J]. 吉林大学学报(工学版), 2022, 52(4): 738-744.
[2] 史文库,张曙光,张友坤,陈志勇,江逸飞,林彬斌. 基于改进海鸥算法的磁流变减振器模型辨识[J]. 吉林大学学报(工学版), 2022, 52(4): 764-772.
[3] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
[4] 庄蔚敏,陈沈,王楠. 温度对车身钢铝胶铆连接结构热应力变化的影响[J]. 吉林大学学报(工学版), 2022, 52(1): 70-78.
[5] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[6] 胡兴军,张靖龙,罗雨霏,辛俐,李胜,胡金蕊,兰巍. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1933-1942.
[7] 陈剑斌,周宋泽,费峰永,陈永龙,凌国平. 过盈量及滚花方式对装配式凸轮轴压装失效的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1959-1966.
[8] 罗勇,韦永恒,黄欢,肖人杰,任淋,崔环宇. 驾驶员意图识别的P2.5插混构型双离合器起步控制[J]. 吉林大学学报(工学版), 2021, 51(5): 1575-1582.
[9] 曾小华,宋美洁,宋大凤,王越. 基于车联网信息的公交客车行驶工况数据处理方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1692-1699.
[10] 马超,高云凯,刘哲,段月星,田林雳. 骨架式车身多材料及梁截面形状和尺寸优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1583-1592.
[11] 兰凤崇,李继文,陈吉清. 面向动态场景复合深度学习与并行计算的DG-SLAM算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1437-1446.
[12] 杨建,夏琦,周海超,王国林. 修正胎体弦轮廓载重子午线轮胎的降噪机理[J]. 吉林大学学报(工学版), 2021, 51(4): 1198-1203.
[13] 龙江启,向锦涛,俞平,王骏骋. 适用于非线性主动悬架滑模控制的线性干扰观测器[J]. 吉林大学学报(工学版), 2021, 51(4): 1230-1240.
[14] 陈鑫,于贵申,张彪,潘凯旋,杨立飞. 搅拌摩擦点焊接头拉伸-剪切行为的等效建模[J]. 吉林大学学报(工学版), 2021, 51(4): 1190-1197.
[15] 宋大凤,杨丽丽,曾小华,王星琦,梁伟智,杨南南. 基于行驶工况合成的混合动力汽车电池寿命优化[J]. 吉林大学学报(工学版), 2021, 51(3): 781-791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!