吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3526-3533.doi: 10.13229/j.cnki.jdxbgxb.20230192

• 交通运输工程·土木工程 • 上一篇    下一篇

基于潜在类别模型的急陡弯路段驾驶行为辨析

李德林1(),陈俊先1,王永岗1(),王露1,沈照庆2   

  1. 1.长安大学 运输工程学院,西安 710064
    2.长安大学 公路学院,西安 710064
  • 收稿日期:2023-03-04 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 王永岗 E-mail:lidelin@chd.edu.cn;wangyg@chd.edu.cn
  • 作者简介:李德林(1992-),男,博士研究生.研究方向:等级公路交通安全.E-mail:lidelin@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFB1600503)

Identification of driving behavior on steep sharp curves based on latent class model

De-lin LI1(),Jun-xian CHEN1,Yong-gang WANG1(),Lu WANG1,Zhao-qing SHEN2   

  1. 1.School of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.School of Highway,Chang'an University,Xi'an 710064,China
  • Received:2023-03-04 Online:2024-12-01 Published:2025-01-24
  • Contact: Yong-gang WANG E-mail:lidelin@chd.edu.cn;wangyg@chd.edu.cn

摘要:

针对急陡弯中各类驾驶员的行车特征区分问题,提出了基于车辆行驶参数的驾驶员行为分类方法。通过分析实车驾驶数据,筛选出车型、入弯前速度、出弯后速度、入弯前减速行为、是否跟驰行驶以及入/出弯间速度差6项变量,构建了潜在类别模型,并基于该模型确定了各类驾驶员的特征。结果表明:该模型可将急陡弯中的驾驶员分为平稳型、受限型和自由型3类。平稳型驾驶员各项特征参数均居于3类驾驶员的中位,倾向于匀速入、出弯;受限型驾驶员在入弯时有最明显的减速或跟驰行驶特征,而自由型驾驶员则拥有最高的入、出弯速度,且出弯后的减速行为最为明显。

关键词: 交通运输系统工程, 驾驶行为, 急陡弯, K-means聚类, 潜在类别模型, 驾驶员分类

Abstract:

The issue of distinguishing driving behavior characteristics in steep sharp curves was addressed by employing a behavior classification method based on vehicle driving parameters. After analyzing real driving data, six variables were selected, including vehicle type, velocity before curve, velocity after curve, deceleration before curve, car-following driving and differences in velocity pre- and post-curve. The characteristics of each type of drives were determined based on the construction of the latent model. The findings that drivers could be classified into three categories: stable drivers, restricted drivers, and free drivers. Stable drivers exhibited parameter values that fell between all three types, they tended to enter and exit curves at a consistent speed. Restricted drivers showed significant features of deceleration or car-following driving before curves. Conversely, the free drivers had the highest velocity before and after curve with their differences in velocity pre- and post-curve were also the highest.

Key words: engineering of communications and transportation system, driving behavior, steep sharp curve, K-means clustering, latent class model, driver classification

中图分类号: 

  • U491.255

图1

急陡弯数据收集示意图"

表1

急陡弯参数"

急陡弯

编号

弯道

长度/m

实验路段总长/m坡度/%

转弯

半径/m

14905503.4780
25105703.8820
34805403.1740

表2

数据示例"

编号车牌车型入弯速度/(km·h-1出弯速度/(km·h-1速度差/(km·h-1入弯前减速行为跟驰行为
1陕H68839小汽车62.8662.390.47
2陕EWD075小汽车57.1042.7314.36
3陕HN5065小汽车54.2249.145.08
4陕A3B015摩托53.6054.83-1.22
5陕A2UE90小汽车59.6954.974.72
6陕HW5988小汽车54.3249.105.22
7陕H18682货车66.2455.5510.69

图2

入/出弯速度散点图"

图3

入、出弯速度差散点图"

表3

外显变量聚类结果"

外显变量聚类数聚类中心
入弯速度/(km·h-1124.08
236.86
345.25
455.55
567.90
出弯速度/(km·h-1123.00
235.28
344.10
454.36
567.25
速度差/(km·h-11-8.53
20.43
36.73
49.84

表4

外显变量统计结果"

编号变量名水平样本数量样本比例/%
V1车型153482.28
27211.09
3436.63
V2入弯速度/(km·h-118112.48
218528.51
323936.83
49614.79
5426.47
V3出弯速度/(km·h-117511.56
215323.57
326440.68
411016.95
5477.24
V4速度差/(km·h-118713.41
228243.45
322033.90
4609.24
V5

入弯前

减速行为

122033.90
242966.10
V6

跟驰行

驶行为

128243.45
236756.55

表5

各模型拟合优度检验结果"

潜在类别个数AICBICχ2p-value
27 004.297 143.032 443.924.00E-41
36 557.476 767.811 212.960.000 16
46 319.566 601.51799.420.127
56 196.056 549.61427.291.000

表6

参数估计结果"

外显变

量名称

水平潜在类别
第1类第2类第3类
车型10.870 50.750 10.847 1
20.107 50.114 20.112 3
30.022 00.135 80.040 6
入弯速度10.000 20.380 90.000 3
20.160 80.618 20.000 6
30.838 80.000 50.068 7
40.000 20.000 20.647 2
50.000 10.000 10.283 2
出弯速度10.000 10.328 40.000 3
20.000 40.669 70.000 5
30.966 40.001 60.001 0
40.033 00.000 20.681 4
50.000 10.000 10.316 9

入弯前减

速行为

10.343 80.341 90.325 7
20.656 20.658 10.674 3
跟驰行驶10.416 50.627 00.171 2
20.583 50.373 00.828 8
总体概率0.420 10.351 60.228 3

表7

分类后各类驾驶员比例/%"

类别1类2类3类
潜在类别概率42.0135.1622.83
实际样本比例41.4535.1323.42
误差1.350.09-2.52

表8

潜在类别模型分类结果"

类别车型

入弯

速度

出弯

速度

入弯前减

速行为

跟驰

行为

1类123344.1940.241.661.58
229
36
2类116731.4333.11.651.38
226
331
3类113457.5350.331.681.8
217
36
1 国家统计局.交通事故年度数据查询[DB/OL].[2023-01-12].
2 吕璞,柏强,陈琳. 融合深度反残差与注意力机制的山区高速公路事故严重程度预测模型[J]. 中国公路学报, 2021, 34(6): 205-213.
Pu Lyu, Bai Qiang, Chen Lin. A model for predicting the severity of accidents on mountainous expressways based on deep inverted residuals and attention mechanisms[J]. China Journal of Highway and Transport, 2021, 34(6): 205-213.
3 胡立伟,薛刚,李林育,等. 高原地质及气象环境下公路交通风险致因耦合分析[J]. 中国公路学报, 2018, 31(1): 110-119.
Hu Li-wei, Xue Gang, Li Lin-yu, et al. Analysis of coupling of highway traffic risks in geological and meteorological environment of plateau regions[J]. China Journal of Highway and Transport, 2018, 31(1): 110-119.
4 Praveena P, Srinivas P S. Modeling crash injury severity by road feature to improve Safety[J]. Traffic Injury Prevention, 2018, 19(1): 102-109.
5 房锐,张琪,胡澄宇,等. 基于风险矩阵的干线公路弯道路段交通冲突风险评估模型[J]. 交通运输系统工程与信息, 2021, 21(2): 166-172.
Fang Rui, Zhang Qi, Hu Cheng-yu, et al. Risk assessment model based on risk matrix for traffic conflict on arterial highway bend section[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 166-172.
6 曲昭伟,李霖,陈永恒,等.长区间掉头车辆特性分析及其安全评价[J].吉林大学学报:工学版,2024,54(8):2206-2213 .
Qu Zhao-wei, Li Lin, Chen Yong-heng, et al. Traffic characteristics and safety analysis of long interval U-turn intersections[J]. Journal of Jilin University (Engineering and Technology Edition), 2024,54(8): 2206-2213 .
7 王海晓,李永翔,丁旭,等.基于边缘智能的城市下穿隧道车辆行车安全预测[J].吉林大学学报: 工学版, 2022, 52(6): 1337-1343.
Wang Hai-xiao, Li Yong-xiang, Ding Xu, et al. Traffic safety prediction of urban underpass tunnel vehicles based on edge intelligence[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1337-1343.
8 Wu J W, Yan X D, Radwan E. Discrepancy analysis of driving performance of taxi drivers and non-professional drivers for red-light running violation and crash avoidance at intersections[J]. Accident Analysis & Prevention, 2016, 91: 1-9.
9 Mani K, Mun S W, Hayati K. Speeding among taxi drivers in Selangor, Malaysia[J]. Injury Prevention, 2010, 16(1): No.A14.
10 Ahmed M, Abdel A M, Yu R. Assessment of Interaction of crash occurrence mountainous freeway geometry, real-time weather, and traffic data[J]. Transportation Research Record, 2012(1): 51-59.
11 Yuan J, Abdel A M, Wang L, et al. Real-time crash risk analysis of urban arterials incorporating Bluetooth, weather and adaptive signal control data[DB/OL].[2023-01-13].
12 Athanasios T. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials[J]. Journal of Safety Research, 2017, 61: 9-21.
13 孟祥海,张道玉,吴佩洁. 滑动窗窗体长度及滑动步长对事故多发路段鉴别影响[J]. 交通运输系统工程与信息, 2018, 18 (4): 148-155.
Meng Xiang-hai, Zhang Dao-yu, Wu Pei-jie. The impact of window size and sliding length on the results of black spots identification[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4): 148-155.
14 Wang X, Feng M. Freeway single and multi-vehicle crash safety analysis: influencing factors and hotspots [J]. Accident Analysis & Prevention, 2019, 132(1): 52-68.
15 李骁楠,陈丰,董博文. 考虑桥梁结构运动的河口大跨桥梁事故风险因素分析[J]. 同济大学学报: 自然科学版, 2021, 49(6): 863-871.
Li Xiao-nan, Chen Feng, Dong Bo-wen. Analysis of risk factors of estuarine long-span bridge considering bridge structure movement[J]. Journal of Tongji University (Nature Science), 2021, 49(6): 863-871.
16 薛锋,胡萍,黄宇. 基于组合模型的公路隧道交通安全评价[J].公路交通科技, 2021, 38(7): 85-95.
Xue Feng, Hu Ping, Huang Yu. Traffic safety evaluation of highway tunnel based on combined model[J]. Journal of Highway and Transportation Research and Development, 2021, 38(7): 85-95.
17 钱勇,马建霄,赵顗,等. 基于集对可拓物元模型的公路隧道运营环境安全评价方法[J]. 森林工程, 2020, 36(1): 87-95.
Qian Yong, Ma Jian-xiao, Zhao Yi, et al. Safety evaluation method for highway tunnel operation environment based on set -pair extension matter element model[J]. Forest Engineering, 2020, 36(1): 87-95.
18 Yan M H, Xu J L. Prediction model for brake-drum temperature of large trucks on consecutive mountain downgrade routes based on energy conservation law[J]. Mathematical Problems in Engineering, 2018, 2018(11): No.4587673.
19 丰明洁,王婷,王雪松,等. 山区高速公路平纵组合路段设计安全评估[J]. 北京工业大学学报, 2018, 44(6): 919-925.
Feng Ming-jie, Wang Ting, Wang Xue-song, et al. Safety evaluation of combined horizontal and vertical alignments on mountainous freeways[J]. Journal of Beijing University of Technology, 2018, 44(6): 919-925.
20 寇云蛟. 小半径弯坡路段行车特性分析与安全处置策略研究[D]. 重庆:重庆交通大学交通运输学院, 2020.
Kou Yun-jiao. Analysis of driving characteristics and study of safety disposal strategy in small radius curve section[D]. Chongqing:College of Traffic & Transportation, Chongqing Jiaotong University, 2020.
21 张晓波. 三岔型枢纽互通事故高发匝道的形成机制与安全提升研究[J]. 中国安全生产科学技术, 2022, 18(2): 198-205.
Zhang Xiao-bo. Study on formation mechanism and safety improvement of accident-prone ramp on "T" shape hub interchange [J]. Journal of Safety Science and Technology, 2022, 18(2): 198-205.
22 邱皓政. 潜在类别模型的原理与技术[M]. 北京: 教育科学出版社, 2008.
[1] 周荣贵,高沛,李雨璇,周建. 基于轨迹数据的高速公路小客车异常驾驶行为[J]. 吉林大学学报(工学版), 2024, 54(9): 2581-2587.
[2] 张娜,陈峰,王剑坡,朱亚迪. 基于时空序列相似性的城轨乘客出行模式识别[J]. 吉林大学学报(工学版), 2024, 54(9): 2588-2599.
[3] 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530.
[4] 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556.
[5] 曲昭伟,李霖,陈永恒,吴场建. 长区间掉头车辆特性分析及其安全评价[J]. 吉林大学学报(工学版), 2024, 54(8): 2206-2213.
[6] 何永明,权聪,魏堃,冯佳,万亚楠,陈世升. 超高速公路车路协同路侧单元感知融合方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1923-1934.
[7] 程国柱,盛林,王浩宇,冯天军. 考虑右转车二次冲突的信号交叉口行人过街安全评价方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1903-1912.
[8] 秦雅琴,钱正富,谢济铭. 协同换道避障模型和轨迹数据驱动的车辆协同避障策略[J]. 吉林大学学报(工学版), 2024, 54(5): 1311-1322.
[9] 陈桂珍,程慧婷,朱才华,李昱燃,李岩. 考虑驾驶员生理信息的城市交叉口风险评估方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1277-1284.
[10] 张明业,杨敏,黎彧,黄世玉,李清韵. 考虑有序充电策略的多车型电动公交调度优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1293-1301.
[11] 陈仁祥,胡超超,胡小林,杨黎霞,张军,何家乐. 基于改进YOLOv5的驾驶员分心驾驶检测[J]. 吉林大学学报(工学版), 2024, 54(4): 959-968.
[12] 赵晓华,刘畅,亓航,欧居尚,姚莹,郭淼,杨海益. 高速公路交通事故影响因素及异质性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 987-995.
[13] 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710.
[14] 严利鑫,冯进培,郭军华,龚毅轲. 不同险态情景下共驾型智能车辆接管行为特征分析[J]. 吉林大学学报(工学版), 2024, 54(3): 683-691.
[15] 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .