吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 1903-1912.doi: 10.13229/j.cnki.jdxbgxb.20221108

• 交通运输工程·土木工程 • 上一篇    

考虑右转车二次冲突的信号交叉口行人过街安全评价方法

程国柱1(),盛林1,王浩宇1,冯天军2   

  1. 1.东北林业大学 交通学院,哈尔滨 150040
    2.吉林建筑大学 交通科学与工程学院,长春 130118
  • 收稿日期:2022-08-29 出版日期:2024-07-01 发布日期:2024-08-05
  • 作者简介:程国柱(1977-),男,教授,博士. 研究方向:道路交通安全、交通规划与设计. E-mail:guozhucheng@126.com
  • 基金资助:
    黑龙江省重点研发计划项目(JD22A014);吉林省教育厅科学技术研究项目(JJKH20210270KJ)

Safety evaluation method for pedestrians crossing street at signalized intersection considering secondary conflict of right-turn vehicles

Guo-zhu CHENG1(),Lin SHENG1,Hao-yu WANG1,Tian-jun FENG2   

  1. 1.School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
    2.School of Transportation Science and Engineering,Jilin University of Architecture,Changchun 130118,China
  • Received:2022-08-29 Online:2024-07-01 Published:2024-08-05

摘要:

为研究信号交叉口右转车二次冲突过程中行人过街的安全性,选择云南省昆明市3个信号交叉口作为研究对象,利用交通冲突分析软件T-Analyst获取车辆轨迹数据和交通冲突数据。采用多角度的安全评价方法:基于DV框架判断人-车冲突的初始情况;采用交通冲突指标PETS和PETH、最大拒绝间隙与接受间隙、平均过街车速分析行人过街的安全性。结果表明:相比于次要冲突,主要冲突中行人面对的冲突初始情况更加危险,行人选择有风险过街的频率也更高。车辆的过街行为、交通冲突指标PETS和PETH、最大拒绝间隙、接受间隙、临界间隙等指标在右转车二次冲突中没有明显区别,但次要冲突的平均过街车速明显高于主要冲突的平均过街车速,行人过街的潜在风险在次要冲突处更高。

关键词: 交通运输系统工程, 右转车二次冲突, 信号交叉口, 安全评价

Abstract:

In order to study the safety of pedestrians crossing the street during the second conflict between people and vehicles at signalized intersections, three signalized intersections in Kunming City, Yunnan Province were selected as the research objects, and the traffic conflict analysis software T-Analyst was used to obtain vehicle trajectory data and traffic conflict data. A multi-angle safety evaluation method was adopted, based on the DV framework to judge the initial situation of the person-vehicle conflict, the traffic conflict indicators PETS and PETH, the maximum rejection gap and acceptance gap, and the average crossing speed to analyze the safety of pedestrians crossing the street. The results show that compared with the secondary conflict, the initial conflict situation faced by pedestrians in the primary conflict is more dangerous, and the frequency of pedestrians choosing to cross the street at risk is also higher. There is no significant difference in the secondary human-vehicle conflict in the indicators such as vehicle crossing behavior, traffic conflict indicators PETS and PETH maximum rejection gap, acceptance gap, and critical gap. However, the average crossing speed of the secondary conflict was significantly higher than that of the primary conflict, and the potential risk of pedestrian crossing was higher in the secondary conflict.

Key words: engineering of communications and transportation system, secondary conflict of right-turn vehicle, signalized intersection, safety evaluation

中图分类号: 

  • U491.7

图1

信号交叉口平面图"

表1

信号交叉口相位设置方案"

相位1相位2相位3相位4
南北直行南北左转东西直行东西左转

表2

信号交叉口信息描述"

信号交叉口名称进口道名称路缘石转弯半径/m主要冲突处人行横道长度/m次要冲突处人行横道长度/m拍摄日期
北京路-北辰大道北辰大道西进口34.549.265.92022年1月28日
北辰大道东进口37.252.569.32022年1月29日
北辰大道-金石路北辰大道西进口35.358.746.32022年2月10日
北辰大道东进口40.058.945.62022年2月11日
北京路-东风东路北京路北进口26.452.041.82022年2月15日

图2

地图校准示意图"

图3

交叉口主要冲突与次要冲突示意图"

图4

DV框架示意图"

图5

DV框架中车辆让行行为和行人的过街决策"

表3

有序变量的Mann-Whitney U检验结果"

变量P
初始冲突情况<0.01
车辆让行行为0.701
行人过街决策<0.01

表4

连续变量的ANOVA检验结果"

变量P
PETS0.794
PETH0.292
最大拒绝间隙0.758
接受间隙0.700
发生冲突平均过街车速<0.01
无冲突平均过街车速<0.01

表5

安全评价结果汇总"

冲突类别主要冲突次要冲突
初始冲突情况138100
阶段一冲突概率/%00
阶段二冲突概率/%17.44
阶段三冲突概率/%82.696
车辆让行行为138100
让行率/%97.897
合规让行率/%97.897
行人过街决策--
车辆到达前行人过街总数169131
阶段一冲突概率/%00
阶段二冲突概率/%14.83.8
阶段三冲突概率/%85.296.2
PETS均值/s2.042.00
标准差1.050.88
85%位PETS/s3.13.06
15%位PETS/s1.171.3
PETH均值/s2.512.76
标准差1.531.44
85%位PETH/s3.514.11
15%位PETH/s1.261.27
最大拒绝间隙均值/s3.963.86
标准差2.682.23
85%位最大拒绝间隙/s6.456.47
15%位最大拒绝间隙/s1.441.5
接受间隙均值7.857.67
标准差3.043.15
85%位接受间隙/s11.1510.57
15%位接受间隙/s5.214.44
发生冲突平均过街车速均值/(m·s-12.973.98
标准差1.011.87
85%位车速/(m·s-13.775.73
15%位车速/(m·s-12.012.44
无冲突平均过街车速均值/(m·s-15.046.46
标准差1.501.87
85%位车速/(m·s-16.58.48
15%位车速/(m·s-13.564.53
特殊冲突发生概率/%00

图6

人-车冲突PET箱形图"

图7

最大拒绝间隙与接受间隙箱形图"

图8

最大拒绝间隙与接受间隙累积频率分布"

图9

平均过街车速箱形图"

1 Zhu D, Sze N N, Bai L. Roles of personal and environmental factors in the red light running propensity of pedestrian: case study at the urban crosswalks[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 76: 47-58.
2 World Health Organization. Global status report on road safety 2018: summary[R]. Geneva:World Health Organization, 2018.
3 Fu T, Hu W, Miranda-Moreno L, et al. Investigating secondary pedestrian-vehicle interactions at non-signalized intersections using vision-based trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 222-240.
4 程国柱, 盛林, 赵浩, 等. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报: 工学版,2023, 53(7): 1962-1969.
Cheng Guo-zhu, Sheng Lin, Zhao Hao, et al. Exclusive phase setting condition of signalized intersection based on risk analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(7):1962-1969.
5 Jackson S, Miranda-Moreno L F, St-Aubin P, et al. Flexible, mobile video camera system and open source video analysis software for road safety and behavioral analysis[J]. Transportation Research Record, 2013, 2365(1): 90-98.
6 St-Aubin P, Saunier N, Miranda-Moreno L. Large-scale automated proactive road safety analysis using video data[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 363-379.
7 Laureshyn A, De Ceunynck T, Karlsson C, et al. In search of the severity dimension of traffic events: extended Delta-V as a traffic conflict indicator[J]. Accident Analysis & Prevention, 2017, 98:46-56.
8 Fu T, Miranda-Moreno L, Saunier N. A novel framework to evaluate pedestrian safety at non-signalized locations[J]. Accident Analysis & Prevention, 2018, 111: 23-33.
9 Jiang C, Qiu R, Fu T, et al. Impact of right-turn channelization on pedestrian safety at signalized intersections[J]. Accident Analysis & Prevention, 2020, 136: No.105399.
10 Wei D, Xu H, Kumfer W, et al. Vehicular traffic capacity at unsignalized crosswalks with probabilistic yielding behavior[J]. Transportation Research Record, 2015, 2483(1): 80-90.
11 Zhang C, Zhou B, Qiu T Z, et al. Pedestrian crossing behaviors at uncontrolled multi-lane mid-block crosswalks in developing world[J]. Journal of Safety Research, 2018, 64: 145-154.
12 中华人民共和国全国人民代表大会常务委员会. 中华人民共和国道路交通安全法[J]. 中华人民共和国全国人民代表大会常务委员会公报, 2008(1): 32-45.
The Standing Committee of the National People's Congress of the People's Republic of China. Road traffic safety law of the People's Republic of China[J]. Gazette of the Standing Committee of the National People's Congress of the People's Republic of China, 2008(1): 32-45.
13 Zhang Y, Fricker J D. Incorporating conflict risks in pedestrian-motorist interactions: a game theoretical approach[J]. Accident Analysis & Prevention, 2021, 159: No. 106254.
14 Shaon M R R, Schneider R J, Qin X, et al. Exploration of pedestrian assertiveness and its association with driver yielding behavior at uncontrolled crosswalks[J]. Transportation Research Record, 2018, 2672(35): 69-78.
15 Wang Y, Su Q, Wang C, et al. Investigating yielding behavior of heterogeneous vehicles at a semi-controlled crosswalk[J]. Accident Analysis & Prevention, 2021, 161: No.106381.
16 Zhang Y, Fricker J D. Multi-state semi-Markov modeling of recurrent events: estimating driver waiting time at semi-controlled crosswalks[J]. Analytic Methods in Accident Research, 2020, 28: No.100131.
17 Sołowczuk A, Kacprzak D. Identification of the determinants of the effectiveness of on-road chicanes in transition zones to villages subject to a 70 km/h speed limit[J]. Energies, 2020, 13(20): No.5244.
18 Varhelyi A. Drivers' speed behaviour at a zebra crossing: a case study[J]. Accident Analysis & Prevention, 1998, 30(6): 731-743.
19 Zhang C, Zhou B, Chen G, et al. Quantitative analysis of pedestrian safety at uncontrolled multi-lane mid-block crosswalks in China[J]. Accident Analysis & Prevention, 2017, 108: 19-26.
20 Transportation Research Board. Highway Capacity Manual[M]. Washington DC: National Research Council,2010.
21 Pawar D S, Patil G R. Critical gap estimation for pedestrians at uncontrolled mid-block crossings on high-speed arterials[J]. Safety Science, 2016, 86: 295-303.
22 马万经, 叶新晨, 廖大彬, 等. 停车让行交叉口机动车接受间隙和拒绝间隙分布特征[J]. 中国公路学报, 2015, 28(4): 86-93.
Ma Wan-jing, Ye Xin-chen, Liao Da-bin, et al. Distribution characteristics of accepted gap and rejected gap for vehicles crossing stop-controlled intersections[J]. China Journal of Highway and Transport, 2015, 28(4): 86-93.
23 Brilon W, Koenig R, Troutbeck R J. Useful estimation procedures for critical gaps[J]. Transportation Research Part A: Policy and Practice, 1999, 33(3/4): 161-186.
[1] 秦雅琴,钱正富,谢济铭. 协同换道避障模型和轨迹数据驱动的车辆协同避障策略[J]. 吉林大学学报(工学版), 2024, 54(5): 1311-1322.
[2] 张明业,杨敏,黎彧,黄世玉,李清韵. 考虑有序充电策略的多车型电动公交调度优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1293-1301.
[3] 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726.
[4] 严利鑫,冯进培,郭军华,龚毅轲. 不同险态情景下共驾型智能车辆接管行为特征分析[J]. 吉林大学学报(工学版), 2024, 54(3): 683-691.
[5] 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710.
[6] 涂辉招,王万锦,乔鹏,郭静秋,鹿畅,吴海飞. 自动驾驶卡车路测安全员接管干预行为解析[J]. 吉林大学学报(工学版), 2024, 54(3): 727-740.
[7] 张健,李青扬,李丹,姜夏,雷艳红,季亚平. 基于深度强化学习的自动驾驶车辆专用道汇入引导[J]. 吉林大学学报(工学版), 2023, 53(9): 2508-2518.
[8] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[9] 李建华,王泽鼎. 考虑路径耗时的城市汽车分布式充电桩选点规划[J]. 吉林大学学报(工学版), 2023, 53(8): 2298-2303.
[10] 李洪涛,王琳虹,李俊达. 公路交叉口照明和限速对视觉搜索能力的影响[J]. 吉林大学学报(工学版), 2023, 53(8): 2287-2297.
[11] 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015.
[12] 程国柱,盛林,赵浩,冯天军. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报(工学版), 2023, 53(7): 1962-1969.
[13] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[14] 薛志佳,王召阳,张久鹏,晏长根,许子凯,张英立,黄晓明,马涛. 泥石流作用下道路结构韧性分析及提升[J]. 吉林大学学报(工学版), 2023, 53(6): 1773-1781.
[15] 刘振亮,赵存宝,吴云鹏,马迷娜,马龙双. 数据驱动的公路桥梁网络全寿命抗震韧性评估[J]. 吉林大学学报(工学版), 2023, 53(6): 1695-1701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!