吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 1-19.doi: 10.13229/j.cnki.jdxbgxb.20230972

• 综述 •    

内燃机先进燃烧模式闭环控制策略综述

宋恩哲1(),刘晓阳2,龙云2,李瑞1,柯赟1,姚崇1()   

  1. 1.哈尔滨工程大学 烟台研究生院,山东 烟台 264000
    2.哈尔滨工程大学 动力与能源工程学院,哈尔滨 150001
  • 收稿日期:2023-09-12 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 姚崇 E-mail:sez2005@hrbeu.edu.cn;yaochong@hrbeu.edu.cn
  • 作者简介:宋恩哲(1973-),男,研究员,博士.研究方向:内燃机智能控制.E-mail:sez2005@hrbeu.edu.cn
  • 基金资助:
    山东省自然科学基金项目(ZR2023QE009)

Review of internal combustion engine advanced combustion mode control strategy

En-zhe SONG1(),Xiao-yang LIU2,Yun LONG2,Rui LI1,Yun KE1,Chong YAO1()   

  1. 1.Yantai Research Institute,Harbin Engineering University,Yantai 264000,China
    2.College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2023-09-12 Online:2025-01-01 Published:2025-03-28
  • Contact: Chong YAO E-mail:sez2005@hrbeu.edu.cn;yaochong@hrbeu.edu.cn

摘要:

本文对先进燃烧模式的内涵和发展过程进行了总结,介绍了内燃机各种先进燃烧模式目前的研究进展,重点介绍了先进燃烧闭环控制策略及系统硬件平台组成,对机器学习在控制过程中起到的作用进行了阐述;针对先进燃烧模式发动机控制未来的发展方向进行了展望,可以为先进燃烧模式实现的相关研究提供参考。

关键词: 动力工程, 内燃机, 先进燃烧模式, 多燃烧模式组合燃烧, 智能化控制系统

Abstract:

This article summarizes the connotation and development process of advanced combustion modes, introduces the current status of various advanced combustion modes of internal combustion engines, and focuses on the control strategies and system hardware platforms for advanced combustion closed-loop control. The role of machine learning in the control process is also explained. This article also looks forward to the future development direction of advanced combustion mode engine control. It can provide a reference for related research on the implementation of advanced combustion modes.

Key words: power engineering, internal combustion engine, advanced combustion mode, multiple combustion mode combined combustion, intelligent control system

中图分类号: 

  • TP182

图 1

UNIBUS燃烧系统模式组合"

图 2

不同类型发动机多燃烧模式组合燃烧方案"

图 3

双燃料发动机典型运行模式MAP"

图 4

多燃烧模式组合燃烧范围及多模式切换控制策略"

图 5

基于模型的控制器设计方法统计图"

表1

控制系统平台及控制策略总结"

研究单位反馈指标算法执行策略控制平台
隆德大学5158101IMEP,CA50

①PID

②MPC

③LQG

汽油+柴油+VVA策略;

EGR+FTM温度控制

集成式平台

RT+FPGA控制平台

现代汽车和汉阳大学7071143SOC,DP,IMEPRBF+FF燃油喷射正时控制燃烧分析设备+发动机控制设备
FEV和亚琛工业大学6061139CA50,CNL

①自学习算法

②迭代学习控制

柴油机控制引燃油喷射情况集成式平台
Ricardo和GE137144

CA50,Pmax

ROC,CIS

IMEP

PI柴油机EGR+节气门+VGT燃烧分析设备+燃烧控制设备+发动机运行控制设备
AVL公司145

IMEP,CA50

Pmax, MPR

柴油机燃油喷射控制+进气温度控制燃烧分析设备+燃烧控制设备+发动机控制设备
Drivven +阿贡国家实验室66IMEP,CA50柴油机喷油正时控制和循环喷油量控制RT-FPGA测控平台
Honda59

IMEP,IT

ITD

柴油机EGR+燃油预喷射控制燃烧分析设备+发动机控制设备
清华大学93-97IMEP,CA50

PID

LQG

柴油机改造结合低辛烷值燃料利用燃料早喷+EGR燃烧分析设备+发动机控制设备
吉林大学79-82IMEP,CA50

统计决策

PI

柴油机喷油时刻、喷油脉宽以及轨压控制燃烧分析设备+发动机控制设备
天津大学47IMEP,CA50PID汽油机VVT实现内部EGR燃烧分析设备+燃烧控制设备+发动机运行控制设备
上海交通大学+711研究所4578147CA50PID柴油机气缸内喷射CO2燃烧分析设备+燃烧控制设备+发动机运行控制设备
武汉理工大学89-91IMEP,CA50PID柴油机喷油时刻、喷油脉宽以及轨压控制燃烧分析设备+发动机运行控制设备/RT+FPGA
1 郑洁, 柳存根,林忠钦.绿色船舶低碳发展趋势与应对策略[J].中国工程科学,2020,22(6):94-102.
Zheng-jie, Liu Cun-gen, Lin Zhong-qin. Low-carbon development of green ships and related strategies[J]. Strategic Study of CAE, 2020,22(6):94-102.
2 Reitz R D, Ogawa H, Payri R, et al. IJER editorial: the future of the internal combustion engine[J]. International Journal of Engine Research, 2020, 21(1): 3-10.
3 燃料灵活性是船舶过渡到未来燃料的关键[EB/OL].[2023-08-12]..
4 Yao M, Zheng Z, Liu H. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines[J]. Progress in Energy And Combustion Science, 2009, 35(5): 398-437.
5 张志强,赵福全,李理光.柴油机低温燃烧技术综述[J].汽车工程学报,2016,6(4):235-243.
Zhang Zhi-qiang, Zhao Fu-quan, Li Li-guang. A review on technologies of low temperature combustionfor diesel engines[J]. Chinese Journal of Automotive Engineering, 2016,6(4):235-243.
6 Maurya R K. Characteristics and Control of Low Temperature Combustion engines[M]. Berlin: Springer, 2018.
7 Onishi S, Jo S, Shoda K, et al. Active thermo-atmosphere combustion (ATAC)—a new combustion process for internal combustion engines[C]∥SAE Technical Paper,1979-790501.
8 Thring R. Homogeneous-charge compression-ignition (HCCI) engines[C]∥SAE Technical Paper,1989-892068.
9 李耀宗, 缪雪龙, 彭海勇. 低温燃烧技术综述[J].农业装备与车辆工程,2022,60(7):109-113, 117.
Li Yao-zong, Miao Xue-long, Peng Hai-yong.Review of low temperature combustion technology[J]. Agricultural Equipment & Vehicle Engineering, 2022,60(7):109-113, 117.
10 Biswas S, Sengupta A, Kakati D, et al. The transition from conventional biodiesel combustion to RCCI with CNG/ethanol induction in CI engine: a comparative combustion analysis and relative effects on performance-emissions[J]. International Journal of Engine Research, 2023, 24(6): 2505-2522.
11 Yu L, Li Y, Li B, et al. Comparative study on gasoline hcci and dici combustion in high load range with high compression ratio for passenger cars application[J]. SAE International Journal of Fuels and Lubricants, 2017, 10(3): 710-717.
12 Najafi B, Akbarian E, Lashkarpour S M, et al. Modeling of a dual fueled diesel engine operated by a novel fuel containing glycerol triacetate additive and biodiesel using artificial neural network tuned by genetic algorithm to reduce engine emissions[J]. Energy, 2019, 168: 1128-1137.
13 Bidarvatan M, Shahbakhti M. Gray-box modeling for performance control of an HCCI engine with blended fuels[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(10): No.101510.
14 Hardy W L, Reitz R D. A study of the effects of high EGR, high equivalence ratio, and mixing time on emissions levels in a heavy-duty diesel engine for PCCI combustion[C]∥SAE Technical Paper, 2006-0026.
15 Zhang Y, Sellnau M. A computational investigation of PPCI-diffusion combustion strategy at full load in a light-duty GCI engine[J]. SAE International Journal of Advances and Current Practices in Mobility, 2021, 3(2021): 1757-1775.
16 Willems R, Willems F, Deen N, et al. Heat release rate shaping for optimal gross indicated efficiency in a heavy-duty RCCI engine fueled with E85 and diesel[J]. Fuel, 2021, 288: No.119656.
17 Pandian M M, Krishnasamy A. Homogeneous charges with direct injection strategy to achieve high efficiency and clean combustion in diesel engines[J]. SAE International Journal of Engines, 2021, 14(3): 319-334.
18 于洋,苏万华. 多次喷射所组织的复合燃烧及其排放的影响因素[J]. 内燃机学报, 2010, 28(5): 385-392.
Yu Yang, Su Wan-hua. Numerical of the effects on the emissions of compound combustion using multiple flexible injections[J]. Transactions of CSICE, 2010, 28(5): 385-392.
19 鹿盈盈,苏万华,于文斌. 多次喷油实现清洁高效柴油预混燃烧的机理[J]. 内燃机学报, 2012, 30(2): 97-106.
Lu Ying-ying, Su Wan-hua, Yu Wen-bin. Mechanism of multiple injections on clean and high efficiency diesel PCCI combustion[J]. Transactions of CSICE, 2012, 30(2): 97-106.
20 王辉. 多脉冲喷油模式的调制及其对柴油HCCI燃烧过程影响的研究[D]. 天津:天津大学机械工程学院, 2005.
Wang Hui. A study of modulation of multi-pulse injection mode and its effects on diesel HCCI combustion[D].Tianjing: College of Mechanical Engineering, Tianjin University,2005.
21 Su W, Liu B, Wang H, et al. Effects of multi-injection mode on diesel homogeneous charge compression ignition combustion[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(1): 230-238.
22 王辉, 苏万华, 刘斌. 基于调制多脉冲喷油模式的柴油预混合燃烧和排放特性的研究[J]. 内燃机学报, 2005 (4): 289-296.
Wang Hui, Su Wan-hua, Liu Bin. Study of characteristics of premixed diesel combustion and emissions based on modulated multi-pulse injection modes[J]. Transactions of CSICE, 2005 (4): 289-296.
23 王辉, 苏万华, 刘斌, 等. 调制多脉冲喷油策略的实现及对HCCI燃烧过程影响的研究[J]. 内燃机学报, 2005(5): 385-391.
Wang Hui, Su Wan-hua, Liu Bin,et al. A study of realization of modulated multi-pulse injection mode and its effects on HCCI combustion[J]. Transactions of CSICE, 2005(5): 385-391.
24 于文斌, 刘斌, 李洋, 等. 基于多脉冲喷射、可变增压以及推迟进气门关闭定时技术的混合燃烧控制策略[J]. 燃烧科学与技术, 2012, 18(4): 331-337.
Yu Wen-bin, Liu Bin, Li Yang, et al. Hybrid combustion control strategy based on technologies of multi-pulse injections,variable boost pressure and retarded intake valve closing timing in a heavy duty diesel engine[J]. Journal of Combustion Science and Technology, 2012, 18(4): 331-337.
25 Kimura S, Aoki O, Ogawa H,et al. New combustion concept for ultra-clean and high-efficiency small DI diesel engines[C]∥SAE Paper, 1999-3681.
26 Shuji K, Osamu A, Yasuhisa K,et al. Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards[C]∥SAE Technical Paper, 2001-0200.
27 Keiji K, Takashi A, Motohiro S,et al. Combination of combustion concept and fuel property for ultra-clean DI diesel[C]∥SAE Technical Paper, 2004-1868.
28 Walter B, Gatellier B. Near zero NOx emissions and high fuel efficiency diesel engine: the NADITM concept using dual mode combustion[J]. Oil & Gas Science and Technology, 2003, 58(1): 101-114.
29 Takeda Y, Keiichi N, Keiichi N. Emission characteristics of premixed lean diesel combustion with extremely early staged fuel injection[C]∥SAE Paper, 1996-961163.
30 Nakagome K, Shimazaki N, Niimura K, et al. Combustion and emission characteristics of premixed lean diesel combustion engine[J]. SAE Transactions, 1997: 1528-1536.
31 Su W H, Lin T J, Pei Y Q. A compound technology for HCCI combustion in a di diesel engine based on the multi-pulse injection and the BUMP combustion chamber[R].SAE Technical Paper, 2003-0741.
32 Kokjohn S L, Hanson R M, Splitter D A, et al. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion[J]. International Journal of Engine Research, 2011, 12: 209-226.
33 Kokjohn S L, Hanson R M, Splitter D A, et al. Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending[J]. SAE International Journal of Engines, 2010, 2(2): 24-39.
34 Sankaralingam R K, Feroskhan M, Elango M, et al. Experimental studies on premixed charge and reactivity-controlled compression ignition combustion modes using gasoline/diesel fuel combination[J]. Case Studies in Thermal Engineering, 2022, 39: No.102467.
35 Poorghasemi K, Saray R K, Ansari E, et al. Effect of diesel injection strategies on natural gasdiesel RCCI combustion characteristics in a light duty diesel engine[J]. Applied Energy, 2017, 199: 430-446.
36 耿培林,姚春德,胡江涛,等. 柴油在甲烷氛围及在甲醇氛围下的着火燃烧特性[J]. 燃烧科学与技术, 2017, 23(4): 344-350.
Geng Pei-lin, Yao Chun-de, Hu Jiang-tao,et al. Ignition and combustion characteristics of diesel in premixedmethane and methanol atmosphere[J].Journal of Combustion Science and Technology, 2017, 23(4): 344-350.
37 任烁今. 重型发动机均质混合气引燃燃烧的试验研究和数值模拟[D].北京:清华大学车辆与运载学院, 2018.
Ren Shuo-jin. Experimental and numerical investigation of homogeneous charge induced ignition combustion on a heavy-duty engine[D].Beijing: School of Vehicle and Mobility, Tsinghua University, 2018.
38 穆林. 基于共轨系统的柴油引燃式天然气发动机控制与优化研究[D].北京: 清华大学车辆与运载学院, 2013.
Mu Lin. Research on control and optimazation of common rail based diesel ignited natural gas engine[D].Beijing: School of Vehicle and Mobility, Tsinghua University,2013.
39 李临蓬,毛斌,刘海峰,等. 多缸重型柴油机的预混低温燃烧[J]. 燃烧科学与技术, 2019, 25(1): 16-23.
Li Lin-peng, Mao Bin, Liu Hai-feng. Premixed low-temperature combustion in multi-cylinder heavy-duty diesel engine[J]. Journal of Combustion Science and Technology, 2019, 25(1): 16-23.
40 李临蓬,毛斌,郑尊清,等. 汽油、正丁醇掺混柴油对部分预混压燃的燃烧和排放影响[J]. 内燃机学报, 2020, 38(4): 289-297.
Li Lin-peng, Mao Bin, Zheng Zun-qing. Effect of gasoline/diesel and n-butanol/diesel blends on combustion and emissions of PPCI[J]. Transactions of CSICE, 2020, 38(4): 289-297.
41 Manente V, Tunestal P, Johansson B, et al. Effects of ethanol and different type of gasoline fuels on partially premixed combustion from low to high load[C]∥SAE Paper, 2010-0871.
42 Manente V, Johansson B, Tunestal P. Partially premixed combustion at high load using gasoline and ethanol, a comparison with diesel[C]∥SAE Technical Paper, 2009-0944.
43 方强. 基于喷射策略和燃料设计的压燃式发动机高效低排放燃烧模式研究[D]. 上海:上海交通大学机械工程学院, 2013.
Fang Qiang.Study on high-efficiency low-emission combustion modes in compression ignition engines based on injection strategy and fuel design [D]. Shanghia:College of Mechanical Engineering, Shanghai Jiao Tong University, 2013.
44 冀雯霞. 船用低速机燃烧排放多策略协同优化研究[D]. 上海:上海交通大学机械工程学院, 2019.
Ji Wen-xia. Multi-strategy collaborative optimization research on combustion emissions of marine low-speed engines [D]. Shanghai:College of Mechanical Engineering, Shanghai Jiaotong University, 2019.
45 曲栓, 石磊, 邓康耀. 柴油机低温燃烧闭环控制及切换过程[J]. 上海交通大学学报, 2012, 46(4): 540-544.
Qu Shuan, Shi Lei, Deng Kang-yao. Closed-loop control and transition process of low-temperature combustion in diesel engines[J]. Journal of Shanghai Jiao Tong University, 2012, 46(4): 540-544.
46 隆武强, 王一聪, 张强, 等. JCCI发动机预混合着火与燃烧过程的模拟[J]. 内燃机学报, 2014, 32(4): 302-308.
Long Wu-qiang, Wang Yi-cong, Zhang Qiang, et al. Simulation of premixed ignition and combustion processes in JCCI engines[J]. Transactions of CSICE, 2014, 32(4): 302-308.
47 隆武强,礼博,李达,等. 柴油射流控制柴油基燃料预混合气压缩着火相位的试验研究[J]. 中南大学学报:自然科学版, 2018, 49(7): 1815-1822.
Long Wu-qiang, Li Bo, Li Da, et al. Experimental study on compression ignition phase of diesel jet controlled diesel base fuel premixed mixture[J]. Journal of Central South University (Science and Technology), 2018, 49(7): 1815-1822.
48 赵国锋. 基于模型的柴油微引燃天然气发动机控制及性能优化研究[D]. 哈尔滨:哈尔滨工程大学动力与能源工程学院, 2020.
Zhao Guo-feng. Control and performance optimization of diesel micro-pilot ignition natural gas engines based on models[D]. Harbin: College of Power and Energy Engineering, Harbin Engineering University, 2020.
49 龙云. 基于模型的双燃料发动机转速控制研究[D]. 哈尔滨:哈尔滨工程大学动力与能源工程学院, 2020.
Long Yun. Research on speed control of dual-fuel engines based on models[D]. Harbin: College of Power and Energy Engineering, Harbin Engineering University, 2020.
50 王佳琦. 油气喷射对柴油/天然气双燃料发动机多模式燃烧特性影响研究[D]. 哈尔滨:哈尔滨工程大学动力与能源工程学院, 2021.
Wang Jia-qi. Study on the impact of oil and gas injection on the multi-mode combustion characteristics of diesel/natural gas dual-fuel engines[D]. Harbin: College of Power and Energy Engineering, Harbin Engineering University, 2021.
51 Olsson J O, Tunestå, P, Johansson B. Closed-loop control of an HCCI engine[C]∥SAE Paper, 2001-1031.
52 Goran H, Per T, Bengt J, et al. HCCI combustion phasing with closed-loop combustion control using variable compression ratio in a multi cylinder engine[C]∥SAE Technical Paper, 2003-1830.
53 Göran H, Per T, Bengt J,et al. HCCI closed-loop combustion control using fast thermal management[C]∥SAE Technical Paper Series: SAE International, 2004-0943.
54 Pfeiffer R, Haraldsson G, Olsson J O,et al. System identification and LQG control of variable-compression HCCI engine dynamics[C]∥Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei,China,2004:No.1387578
55 Karlsson M, Ekholm K, Strandh P, et al. Closed-loop control of combustion phasing in an hcci engine using vva and variable egr[J]. Ifac Proceedings Volumes, 2006, 40: 501-508.
56 Petter S, Johan B, Rolf J, et al. Variable valve actuation for timing control of a homogeneous charge compression ignition engine[C]∥SAE Technical Paper, 2005-0147.
57 Jorques Moreno C, Stenlåås O, Tunestål P. Indicated efficiency optimization by in-cycle closed-loop combustion control of diesel engines[J]. Control Engineering Practice, 2022, 122: No.105097.
58 Zander C G, Tunesta˚l P, Stenla˚a˚s O, et al. In-cycle closed loop control of the fuel injection on a 1-cylinder heavy duty CI-Engine[C]∥Asme 2010 Internal Combustion Engine Division Fall Technical Conference, San Antonio, USA 2010: 405-414.
59 Hasegawa M, Shimasaki Y, Yamaguchi S, et al. Study on ignition timing control for diesel engines using in-cylinder pressure sensor[C]∥SAE Technical Paper, 2006-0180.
60 Thorsten S, Stefan P, Thomas K, et al. Diesel combustion control with closed-loop control of the injection strategy[C]∥SAE Technical Paper, 2008-0651.
61 Hinkelbein J, Sandikcioglu C, Pischinger S, et al. Control of the diesel combustion process via advanced closed loop combustion control and a flexible injection rate shaping tool[J]. SAE International Journal of Fuels and Lubricants, 2010, 2(2): 362-375.
62 Srivastava V, Schaub J, Pischinger S. Advanced model-based closed-loop combustion control strategies with combustion rate shaping[J]. International Journal of Engine Research, 2023,24(8): 3688-3706.
63 Srivastava V, Schaub J, Pischinger S. Combustion rate shaping for flex-fuel applications[J]. International Journal of Engine Research, 2023, 24(5): 2091-2112.
64 Quillen K P, Viele M, Ciatti S A. Next-cycle and same-cycle cylinder pressure based control of internal combustion engines[C]∥Internal Combustion Engine Division Fall Technical Conference, San Antonio, USA, 2010: 635-645.
65 Shaver G M, Gerdes J C, Roelle M. Physics-based closed-loop control of phasing, peak pressure and work output in HCCI engines utilizing variable valve actuation[C]∥Proceedings of the 2004 American Control Conference,Boston, USA, 2004: 150-155.
66 Shaver G M, Gerdes J M, Roelle M J. Physics-based modeling and control of residual-affected HCCI engines[C]∥Proceedings of the 2004 American Control Conference, Boston, USA,2004:No.1383595.
67 Husted H, Kruger D, Fattic G, et al. Cylinder pressure-based control of pre-mixed diesel combustion[C]∥SAE Technical Paper, 2007-0773.
68 Schten K, Ripley G, Punater A, et al. Design of an automotive grade controller for in-cylinder pressure based engine control development[C]∥SAE Technical Paper, 2007-0774.
69 Kumar R, Zheng M, Asad U. Heat release based adaptive control to improve low temperature diesel engine combustion[C]∥SAE Technical Paper, 2007-0771.
70 Liebig D, Krane W, Ziman P, et al. The response of a closed loop controlled diesel engine on fuel variation[C]∥SAE Technical Paper, 2008-2471.
71 Yoon M, Lee K, Sunwoo M. A method for combustion phasing control using cylinder pressure measurement in a CRDI diesel engine[J]. Pergamon, 2007, 17(9): 469-479.
72 Seungsuk O, Daekyung K, Junsoo K. Real-time IMEP estimation for torque-based engine control using an in-cylinder pressure sensor[C]∥SAE Technical Paper, 2009-0244.
73 Willems F, Doosje E, Engels F, et al. Cylinder pressure-based control in heavy-duty EGR diesel engines using a virtual heat release and emission sensor[C]∥SAE Technical Paper, 2010-0564.
74 Huang Y, Yang F Y, Ouyang M G, et al. Optimal feedback control with in-cylinder pressure sensor under engine start conditions[C]∥SAE Technical Paper, 2011-1422.
75 方成,杨福源,欧阳明高,等. 利用以太网的柴油机燃烧分析与控制方法研究[J]. 内燃机工程, 2017, 38(2): 19-23.
Fang Cheng, Yang Fu-yuan, Ouyang Ming-gao, et al. Research on combustion analysis and control method of diesel engine using ethernet[J]. Internal Combustion Engine Engineering, 2017, 38(2): 19-23.
76 方成,杨福源,陈林,等. 柴油机低温预混合燃烧稳定性控制方法[J]. 车用发动机, 2014 (1): 50-54.
Fang Cheng, Yang Fu-yuan, Chen Lin, et al. Stability control method of low-temperature premixed combustion in diesel engines[J]. Automotive Engine, 2014 (1): 50-54.
77 方成,杨福源,欧阳明高,等. 使用缸压信息的柴油机低温燃烧闭环控制[J]. 清华大学学报:自然科学版, 2013, 53(3): 371-377.
Fang Cheng, Yang Fu-yuan, Ouyang Ming-gao, et al. Closed-loop control of low-temperature combustion in diesel engines using cylinder pressure information[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 371-377.
78 曲栓. 缸内喷射CO2对柴油准均质压燃燃烧影响的研究[D]. 上海:上海交通大学机械工程学院, 2010.
Qu Shuan. Study on the influence of in-cylinder co2 injection on diesel homogeneous charge compression ignition combustion [D]. Shanghai: School of Mechanical Engineering, Shanghai Jiaotong University, 2010.
79 魏子凯. 基于缸压信号的增程式发动机燃烧相位控制[D]. 长春:吉林大学汽车工程学院, 2021.
Wei Zi-kai. Combustion phase control of range-extended engines based on cylinder pressure signal [D]. Changchun: College of Automotive Engineering, Jilin University, 2021.
80 孙万臣,刘忠长,刘巽俊,等.燃料特性对小型压燃式发动机增负荷工况燃烧及HC排放的影响[J].吉林大学学报:工学版,2005(2):131-135, 140.
Sun Wan-chen, Liu Zhong-chang, Liu Xun-jun, et al. Influence of fuel characteristics on combustion and HC emissions under high load conditions in small compression ignition engines[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, (2): 131-135, 140.
81 孙士杰. 喷射参数对柴油机稳态和瞬态工况下燃烧的影响[D]. 长春:吉林大学汽车工程学院, 2014.
Sun Shi-jie. Influence of injection parameters on combustion in steady-state and transient conditions of diesel engines [D]. Changchun: College of Automotive Engineering, Jilin University, 2014.
82 佀庆涛. 基于缸压反馈的柴油发动机控制研究[D]. 长春:吉林大学机械工程学院, 2014.
Si Qing-tao. Study on control of diesel engines based on cylinder pressure feedback [D]. Changchun: School of Mechanical Engineering, Jilin University, 2014.
83 王忠恕,吴楠,许允,等. 增压直喷柴油机瞬态工况燃烧参数的变化规律[J]. 内燃机学报, 2007 (5): 385-389.
Wang Zhong-shu, Wu Nan, Xu Yun, et al. Variation patterns of combustion parameters in transient conditions of turbocharged direct injection diesel engines[J]. Transactions of CSICE, 2007 (5): 385-389.
84 刘思品. 基于缸压的柴油机燃烧闭环控制[D].武汉:华中科技大学能源与动力工程学院, 2019.
Liu Si-pin. Closed-loop control of diesel engine combustion based on cylinder pressure [D]. Wuhan: School of Energy and Power Engineering, Huazhong University of Science and Technology, 2019.
85 曹银波,白云,张志永,等. 基于离子电流的HCCI燃烧相位闭环控制[J]. 燃烧科学与技术, 2013, 19(2): 135-140.
Cao Yin-bo, Bai Yun, Zhang Zhi-yong, et al. Closed-loop control of HCCI combustion phase based on ion current[J]. Combustion Science and Technology, 2013, 19(2): 135-140.
86 王小说,安士杰,周磊,等. 基于缸压的闭环控制燃烧参数仿真研究[J]. 小型内燃机与车辆技术, 2018, 47(3): 5-9.
Wang Xiao-shuo, An Shi-jie, Zhou Lei, et al. Simulation study on closed-loop control of combustion parameters based on cylinder pressure[J]. Small Internal Combustion Engines and Vehicle Technology, 2018, 47(3): 5-9.
87 刘晓阳,姚崇,王睿,等. 船用柴油机燃烧过程控制策略设计及仿真验证[J]. 内燃机学报, 2021, 39(3): 209-216.
Liu Xiao-yang, Yao Chong, Wang Rui, et al. Design and simulation verification of combustion process control strategies for marine diesel engines[J]. Transactions of CSICE, 2021, 39(3): 209-216.
88 张俊. 柴油机燃烧闭环控制实时仿真技术研究[D]. 哈尔滨:哈尔滨工程大学动力与能源工程学院, 2020.
Zhang Jun. Research on real-time simulation technology for closed-loop combustion control of diesel engines [D]. Harbin: College of Power and Energy Engineering, Harbin Engineering University, 2020.
89 唐俊,余永华,王勤鹏,等. 船用中速柴油机缸压闭环控制技术仿真研究[J]. 内燃机工程, 2019, 40(1): 72-78.
Tang Jun, Yu Yong-hua, Wang Qin-peng, et al. Simulation study on cylinder pressure closed-loop control technology for marine medium-speed diesel engines[J]. Internal Combustion Engine Engineering, 2019, 40(1): 72-78.
90 余永华,沈叶磊,王勤鹏,等. 船用低速柴油机缸压闭环控制硬件在环仿真技术研究[J]. 内燃机工程, 2019, 40(5): 86-92.
Yu Yong-hua, Shen Ye-lei, Wang Qin-peng, et al. Hardware-in-the-loop simulation technology research on cylinder pressure closed-loop control for marine low-speed diesel engines[J]. Internal Combustion Engine Engineering, 2019, 40(5): 86-92.
91 欧顺华,余永华,胡闹,等. 基于缸压的船用柴油机燃烧闭环控制策略研究[J]. 内燃机工程, 2020, 41(6): 29-35.
Shun-hua Ou, Yu Yong-hua, Hu Nao, et al. Research on closed-loop combustion control strategy for marine diesel engines based on cylinder pressure[J]. Internal Combustion Engine Engineering, 2020, 41(6): 29-35.
92 Proc H Y. A New Generation of Engine Combustion[M].New York: Editions Technip,2001.
93 黄颖. 面向柴油机燃烧闭环控制的新一代控制平台研究及应用[D]. 北京:清华大学车辆与运载学院, 2010.
Huang Ying. Research and application of a new generation control platform for closed-loop combustion control of diesel engines[D]. Beijing: School of Vehicle and Mobility,Tsinghua University, 2010.
94 姚昌晟. 混合发动机燃烧模式优化及控制研究[D]. 北京:清华大学车辆与运载学院, 2019.
Yao Chang-sheng. Research on combustion mode optimization and control of hybrid engines[D]. Beijing: School of Vehicle and Mobility, Tsinghua University, 2019.
95 王金力. 基于燃烧闭环控制的灵活燃料发动机燃烧控制研究[D]. 北京:清华大学车辆与运载学院, 2015.
Wang Jin-li. Research on combustion control of flexible fuel engines based on closed-loop control[D]. Beijing: School of Vehicle and Mobility, Tsinghua University, 2015.
96 方成. 基于缸压信息的压燃发动机燃烧模式识别与反馈控制研究[D]. 北京:清华大学车辆与运载学院, 2015.
Fang Cheng. Research on combustion mode recognition and feedback control of compression ignition engines based on cylinder pressure information[D]. Beijing: School of Vehicle and Mobility, Tsinghua University, 2015.
97 Fang C, Yang F Y, Ouyang M G, et al. Combustion mode switching control in a HCCI diesel engine[J]. Applied Energy, 2013, 110: 190-200.
98 张昊,范钦灏,王巍,等. 基于强化学习的多燃烧模式混合动力能量管理策略[J]. 汽车工程, 2021, 43(5): 683-691.
Zhang Hao, Fan Qin-hao, Wang Wei,et al. Reinforcement learning based energy management strategy for hybrid electric vehicles using multi⁃mode combustion[J].Automotive Engineering,2021, 43(5): 683-691.
99 李坤颖. 柴油/天然气双燃料发动机燃烧策略的研 究[D]. 广州:华南理工大学机械与汽车工程学院,
2016
Li Kun-ying. Research on combustion strategy for diesel/natural gas dual fuel engine[D].Guangzhou:School of Mechanical and Automotive Engineering,South China University of Technology, 2016.
100 Roelle M J, Shaver G M, Gerdes J C. Tackling the transition: a multi-mode combustion model of SI and HCCI for mode transition control[C]∥Asme International Mechanical Engineering Congress and Exposition,Anaheim,USA, 2004: 329-336.
101 Fang C, Ouyang M G, Tunestal P, et al. Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture[J]. Applied Energy, 2018, 231: 816-825.
102 Nieman D E, Morris A P, Neely G D, et al. Utilizing multiple combustion modes to increase efficiency and achieve full load dual-fuel operation in a heavy-duty engine[C]∥SAE Technical Paper, 2019-1157.
103 Guardiola C, Pla B, Bares P, et al. Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback[J]. International Journal of Engine Research, 2020, 21(3): 484-496.
104 Batool S, Naber J, Shahbakhti M. Closed-loop predictive control of a multi-mode engine including homogeneous charge compression ignition, partially premixed charge compression ignition, and reactivity controlled compression ignition modes[C]∥SAE Paper, 2022-0003.
105 Martin J, Boehman A. Mapping the combustion modes of a dual-fuel compression ignition engine[J]. International Journal of Engine Research, 2021, 23: 1453-1474.
106 Fredrik A, Hans-Erik Å, Bengt E, et al. Control of HCCI during engine transients by aid of variable valve timings through the use of model based non-linear compensation[C]∥SAE Technical Paper, 2005-0131.
107 Olsson J O, Pfeiffer R, Tunestål P, et al. Closed-loop system identification of an HCCI engine[J]. Ifac Proceedings Volumes, 2004, 37(22): 239-244.
108 Strandh P, Bengtsson J, Johansson R, et al. Cycle-to-cycle control of a dual-fuel HCCI engine[C]∥SAE Technical Paper, 2004-0941.
109 Aulin H, Johansson T, Tunestål P, et al. Control of a turbo charged NVO HCCI engine using a model based approach[J]. Ifac Proceedings Volumes, 2009, 42: 79-86.
110 Anders W, Hsien-Hsin L, Christian G J, et al. Control of exhaust recompression HCCI using hybrid model predictive control[C]∥Proceedings of the 2011 American Control Conference,San Francisco, USA, 2011:No.5990920.
111 Anders W, Kent E, Per T, et al. Physics-based model predictive control of HCCI combustion phasing using fast thermal management and VVA[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 688-699.
112 Johan B, Petter S, Rolf J, et al. Model predictive control of homogeneous charge compression ignition (HCCI) engine dynamics[C]∥ 2006 IEEE International Conference on Control Applications, Munich, Germany,2006:1675-1680.
113 Karlsson M, Ekholm K, Strandh P, et al. Multiple-input multiple-output model predictive control of a diesel engine[J]. Ifac Proceedings Volumes, 2010, 43: 131-136.
114 Moreno C J, Stenlaas O, Tunestal P. FPGA implementation of in-cycle closed-loop combustion control methods[C]∥SAE Technical Paper, 2021-0024.
115 Muric K, Stenlaas O, Tunestal P, et al. A study on in-cycle control of NO x using injection strategy with a fast cylinder pressure based emission model as feedback[C]∥SAE Technical Paper, 2013-2603.
116 Shaver G M, Roelle M J, Caton P A, et al. A physics-based approach to the control of homogeneous charge compression ignition engines with variable valve actuation[J]. International Journal of Engine Research, 2005, 6: 361-375.
117 Raut A, Bidarvatan M, Borhan H, et al. Model predictive control of an RCCI engine[C]∥2018 Annual American Control Conference (ACC), Milwaukee, USA, 2018: No.8431172.
118 Bidarvatan M, Kothari D, Shahbakhti M. Integrated cycle-to-cycle control of exhaust gas temperature, load, and combustion phasing in an HCCI engine[C]∥2015 American Control Conference (ACC),Chicago, USA,2015: No.7170703.
119 Bidarvatan M, Thakkar V, Shahbakhti M. Grey-box modeling and control of HCCI engine emissions[C]∥2014 American Control Conference, Portland,USA, 2014: 837-842.
120 Mehran-Bidarvatan-Mahdi S. Model-based control of combustion phasing in an HCCI engine[J]. SAE International, 2012, 5(3): 1163-1176.
121 Erik H, Jacob L, Shyam J, et al. Reducing cyclic variability while regulating combustion phasing in a four-cylinder HCCI engine[J]. IEEE Transactions on Control Systems Technology, 2014, 22: 1190-1197.
122 Bidarvatan M, Shahbakhti M. Two-input two-output control of blended fuel HCCI engines[C]∥SAE Technical Paper, 2013-1663.
123 Bidarvatan M, Shahbakhti M, Jazayeri S A, et al. Cycle-to-cycle modeling and sliding mode control of blended-fuel HCCI engine[J]. Control Engineering Practice, 2014, 24: 79-91.
124 Ravi N, Liao H H, Jungkunz A F, et al. Modeling and control of an exhaust recompression HCCI engine using split injection[J]. Journal of Dynamic Systems, Measurement, and Control, 2011,1(134):No.011016-2.
125 Raut A, Irdmousa B K, Shahbakhti M. Dynamic modeling and model predictive control of an RCCI engine[J]. Control Engineering Practice, 2018, 81: 129-144.
126 Yin L H, Turesson G, Tunestal P, et al. Model predictive control of an advanced multiple cylinder engine with partially premixed combustion concept[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 804-814.
127 Widd A, Liao H H, Gerdes J C, et al. Hybrid model predictive control of exhaust recompression hcci[J]. Asian Journal of Control, 2013, 16: 370-381.
128 Kekik B, Akar M. Model predictive control of diesel engine air path with actuator delays[J]. Ifac Papersonline, 2019, 52(18): 150-155.
129 Fathi M, Jahanian O, Shahbakhti M. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines-a comprehensive review[J]. Energy Conversion and Management, 2017, 139: 1-19.
130 Bengtsson J, Strandh P, Johansson R, et al. Hybrid control of homogeneous charge compression ignition (HCCI) engine dynamics[J]. International Journal of Control, 2006, 79(5): 422-448.
131 Janakiraman V M, Nguyen X L, Assanis D. An ELM based predictive control method for HCCI engines[J]. Engineering Applications of Artificial Intelligence, 2016, 48: 106-118.
132 Ebrahimi K, Koch C R B. Real-time control of HCCI engine using model predictive control[C]∥2018 Annual American Control Conference (ACC),Milwaukee,USA, 2018: No. 8431211.
133 Zhang L, Zheng T, Ma Y, et al. Combustion timing control of HCCI engine based on NNPC and Elman‐NN model under complex conditions[J]. Asian Journal of Control, 2023, 25(2): 1115-1129.
134 李顶根,王迪.基于模型预测控制的废气循环HCCI发动机的多变量控制[J].汽车安全与节能学报,2012,3(4):381-389.
Li Ding-gen, Wang Di. Model predictive control of multivariable control for exhaust gas recirculation HCCI engines[J]. Journal of Automotive Safety and Energy, 2012, 3(4): 381-389.
135 Zheng M, Tan Y Y, Reader G T, et al. Prompt heat release analysis to improve diesel low temperature combustion[C]∥SAE Technical Paper, 2009-1883.
136 Chung J, Min K, Oh S, et al. In-cylinder pressure based real-time combustion control for reduction of combustion dispersions in light-duty diesel engines[J]. Applied Thermal Engineering, 2016, 99: 1183-1189.
137 Beaumont A, Lemieux J, Battiston P, et al. Design of a rapid prototyping engine management system for development of combustion feedback control technology[C]∥SAE Technical Paper, 2006-0611.
138 Arora J K, Shahbakhti M. Real-time closed-loop control of a light-duty RCCI engine during transient operations[C]∥SAE Technical Paper, 2017-0767.
139 Bastian L, Stefan P, Maximilian W, et al. A study on in-cycle combustion control for gasoline controlled autoignition[C]∥SAE Technical Paper, 2016-0754.
140 Schiefer D, Maennel R, Nardoni W. Advantages of diesel engine control using in-cylinder pressure information for closed loop control[C]∥SAE Paper, 2003-0364.
141 Ou S, Yu Y, Yang J. Study on the closed-loop combustion control for a diesel engine by using a dynamic-target online prediction model[J]. Control Engineering Practice, 2022, 125: No.105226.
142 胡松,王贺春,孙永瑞,等. 增压柴油机零维预测燃烧模型建模方法[J]. 内燃机学报, 2016, 34(4): 311-318.
Hu Song, Wang He-chun, Sun Yong-rui, et al. Modeling method of zero-dimensional predictive combustion model for turbocharged diesel engines[J]. Transactions of CSICE, 2016, 34(4): 311-318.
143 Yoon M, Lee K, Sunwoo M, et al. Cylinder pressure based combustion phasing control of a CRDI diesel engine[C]∥SAE Technical Paper, 2007-0772.
144 Beasley M, Cornwell R, Fussey P, et al. Reducing diesel emissions dispersion by coordinated combustion feedback control[C]∥SAE Technical Paper, 2006-0186.
145 Hülser H, Neunteufl K, Roduner C, et al. EmIQ: intelligent combustion and control for Tier2 Bin5 diesel engines[C]∥SAE Paper, 2006-1146.
146 周能辉,谢辉,赵华,等. 汽油HCCI发动机实时控制系统的开发[J]. 中国机械工程, 2009, 20(8): 970-974.
Zhou Neng-hui, Xie Hui, Zhao Hua, et al. Development of real-time control system for gasoline HCCI engine[J]. Chinese Journal of Mechanical Engineering, 2009, 20(8): 970-974.
147 胡建村,金江善,王锋,等. 船用柴油机燃烧闭环控制用缸压信号实时采集技术[J]. 舰船科学技术, 2021, 43(17): 142-146.
Hu Jian-cun, Jin Jiang-shan, Wang Feng, et al. Real-time cylinder pressure signal acquisition technology for closed-loop combustion control of marine diesel engines[J]. Journal of Ship Science and Technology, 2021, 43(17): 142-146.
148 Mariani V C, Och S H, Coelho H D S, et al. Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models[J]. Applied Energy, 2019, 249: 204-221.
149 Whitmore S A, Zelesnik E M. Attenuated chamber-pressure signal reconstruction using maximum-likelihood estimation and optimal deconvolution[J]. Journal of Spacecraft and Rockets, 2021, 58(3): 798-812.
150 Ali S A, Saraswati S. Reconstruction of cylinder pressure using crankshaft speed fluctuations[C]∥2015 International Conference on Industrial Instrumentation and Control (ICIC),Pune, India,2015: No.7150785.
151 Bennett C, Dunne J F, Trimby S, et al. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks[J]. Mechanical Systems and Signal Processing, 2017, 85: 126-145.
[1] 高永强,周士谦,齐龙,尹迁齐,黄雪涛,张佳兴. 自激振荡喷嘴流动特性对近嘴区射流雾化的影响[J]. 吉林大学学报(工学版), 2024, 54(6): 1512-1518.
[2] 李晓娜,解方喜,赵靖华,刘宇,孙耀. 内部废气耦合点火对甲醇燃烧和排放的影响[J]. 吉林大学学报(工学版), 2024, 54(3): 631-640.
[3] 周遊,洪伟,解方喜,刘宇,宫洵,李小平. 气门控制策略对无节气门发动机性能的影响[J]. 吉林大学学报(工学版), 2024, 54(1): 55-65.
[4] 吕德淋,周超,韩东. 汽油/丁醇燃料燃烧动力学简化机理的构建和验证[J]. 吉林大学学报(工学版), 2023, 53(5): 1264-1271.
[5] 徐振军,张瑞凤,陈嘉祥,张晓慧,密晓光,陈杰,陈林. 回热对低温大质流密度实验系统能耗影响[J]. 吉林大学学报(工学版), 2023, 53(4): 1133-1138.
[6] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[7] 徐振军,王浩,赵开元,郝博轶,李清清,王常浩. 复合太阳能的燃气机热泵热力学性能[J]. 吉林大学学报(工学版), 2022, 52(8): 1759-1763.
[8] 秦静,郑德,裴毅强,吕永,苏庆鹏,王膺博. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
[9] 赵同宾,吴宜胜,段耀宗,黄震,韩东. RP-3航空煤油的润滑特性和改善措施[J]. 吉林大学学报(工学版), 2022, 52(3): 533-540.
[10] 徐振军,王浩,王银成,张诺,陈孟,李清清. 微通道低温换热器流动传热性能[J]. 吉林大学学报(工学版), 2022, 52(10): 2294-2299.
[11] 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441.
[12] 祖象欢,杨传雷,王贺春,王银燕. 船用柴油机废气再循环性能评估及应用[J]. 吉林大学学报(工学版), 2019, 49(3): 805-815.
[13] 杨帅, 冯志炜, 赵治国, 周毅. 不同米勒循环方式对柴油机工作过程影响的一维模拟分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1444-1454.
[14] 唐志刚, 张力, 尚会超, 吕晓惠, 陈曦, 郑仁蔚. 电热塞点火微型内燃机燃烧特性及残余废气对其的影响[J]. 吉林大学学报(工学版), 2017, 47(3): 811-818.
[15] 解方喜, 于泽洋, 刘思楠, 曹晓峰, 贾贵起, 洪伟. 喷射压力对燃油喷雾和油气混合特性的影响[J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!