吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1489-1498.doi: 10.13229/j.cnki.jdxbgxb20210111

• 车辆工程·机械工程 • 上一篇    

基于PSO-GPR的发动机性能与排放预测方法

秦静1,2(),郑德1,2,裴毅强2,吕永3,苏庆鹏2,3,王膺博2   

  1. 1.天津大学 内燃机研究所,天津 300072
    2.天津大学 内燃机燃烧学国家重点实验室 天津 300072
    3.广州汽车集团股份有限公司 汽车工程研究院,广州 511434
  • 收稿日期:2021-02-01 出版日期:2022-07-01 发布日期:2022-08-08
  • 作者简介:秦静(1979-),女,副研究员,博士. 研究方向:高效清洁发动机燃烧技术. E-mail:qinjing@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51676136)

Prediction method of engine performance and emission based on PSO-GPR

Jing QIN1,2(),De ZHENG1,2,Yi-qiang PEI2,Yong LYU3,Qing-peng SU2,3,Ying-bo WANG2   

  1. 1.Internal Combustion Engine Research Institute,Tianjin University,Tianjin 300072,China
    2.State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China
    3.GAC Automotive Research & Development Center,Guangzhou 511434,China
  • Received:2021-02-01 Online:2022-07-01 Published:2022-08-08

摘要:

针对发动机标定试验成本大、开发周期长等问题,提出一种基于粒子群算法优化的高斯过程回归(PSO-GPR)模型,用于处理非线性、复杂的发动机性能和排放预测,以提高试验效率。基于一款汽油发动机的点火角标定试验,结合间隔填充试验设计,通过模型使用少量的试验数据预测扭矩、比油耗、IMEPcov及HC、NO x 和CO排放等发动机性能和排放参数,并引入R2、RAAE和RMAE对模型泛化能力进行评估。在此基础上研究了不同训练集数量对模型泛化能力的影响,并基于3种不同的机型对模型的普适性进行了验证。结果表明:PSO-GPR模型可以对发动机性能和排放参数进行预测,且精度优于传统的GPR模型和多元多项式回归(MPR)模型,同时该模型具有普适性,为减少发动机标定工作量提供了参考。

关键词: 内燃机工程, 高斯过程回归, 粒子群优化算法, 排放预测

Abstract:

Aiming to overcome the problems of high cost and long development cycle of engine calibration test, a Gaussian Process Regression model based on Particle Swarm Optimization (PSO-GPR) is proposed to deal with nonlinear and complex engine performance and emission prediction for improving test efficiency. Working with calibration tests to the ignition angle of a gasoline engine and combined with the test design of gap filling, engine operating parameters such as torque, fuel consumption, IMEPcov, HC, NO x and CO emissions have been predicted by using the model with a small amount of test data. R2, RAAE and RMAE were introduced to evaluate the model generalization ability. On this basis, the influence of different number of training sets on the generalization ability of the model was studied, and the universality of the model has been verified with three different engines. The results show that the PSO-GPR model can predict the engine performance and emission parameters with expected accuracy which is better than traditional GPR model and Multivariate Polynomial Regression (MPR) model. The study suggests that the model is universal, which provides a reference for reducing the workload of engine calibration.

Key words: internal-combustion engine engineering, Gaussian process regression, particle swarm optimization, emission prediction

中图分类号: 

  • TK411

图1

发动机试验台架系统示意图1-进气;2-空气滤清器;3-中冷器;4-节气门;5-模拟油门;6-喷油共轨;7-角标传感器;8-油耗仪;9-油箱;10-涡轮增压器;11-三元催化器;12-颗粒捕集器;13-排气;14-氧传感器;15-排放采样点;16-排放分析仪;17-燃烧分析仪;18-INCA;19-开放式ECU;20-电子编码器;21-压力测量单元;22-测功机"

表1

发动机技术参数"

参数名称参数信息
发动机型号1.5T
结构形式直列三缸
缸径/mm43
冲程/mm92.17
压缩比11.3
排量/L1.493
最大扭矩/(N·m)235
最高转速/(r·min-16000
额定功率/kW120

图2

试验设计示意图"

图3

发动机原排采集位置"

图4

PSO-GPR模型预测发动机性能与排放流程"

表2

部分工况下点火角对应的性能和排放参数"

工况

点火角/

(°CA)

类型

扭矩/

(r·min-1

比油耗/

[g·(kW·h)-1

IMEPcov/%HC/10-6NO x /10-6CO/10-6

1000 r/min

25%

22.13试验值29.50325.332.282007.54335.653068.38
预测值30.26332.542.162065.65328.723218.11
27.78试验值30.70316.862.192017.54245.743080.53
预测值30.71317.932.261958.22252.533201.09
33.94试验值28.80329.613.782081.65122.622827.46
预测值28.41328.523.762031.98132.812844.04

2800 r/min

50%

15.77试验值78.60245.951.681421.721689.283514.42
预测值78.72247.531.721357.781705.103701.63
21.70试验值79.30241.480.991522.341906.943887.85
预测值79.52240.851.091424.721781.704161.76
27.50试验值80.30239.671.071549.292176.604051.66
预测值80.54238.001.091486.162168.794222.16

5200 r/min

105%

7.36试验值156.60280.582.841139.271203.4528280.46
预测值159.05287.152.661079.681207.4626859.22
11.62试验值164.40249.822.05857.272595.327198.79
预测值168.83246.632.15888.902563.757238.00
14.11试验值168.00241.031.65798.763035.944962.77
预测值171.51239.601.57877.162913.314762.93

图5

整体残差分布"

图6

发动机性能与排放预测结果与试验结果比较"

表3

预测结果多指标评价"

评价

指标

扭矩比油耗IMEPcovHCNO xCO
R20.99840.98910.97050.96960.99130.9903
RAAE0.03030.06780.12680.15180.07030.0651
RMAE0.16450.73730.67110.41330.29970.4993

图7

不同回归模型泛化能力对比"

图8

训练集数据量对模型泛化能力的影响"

表4

验证机型技术参数"

机 型压缩比缸数缸径×行程/mm×mm
1.6T汽油机9.5479.7×81.1
1.8T汽油机9.6482.5×84.1
2.0T汽油机11.65482.5×92.8

表5

验证机型技术参数"

机 型训练集数据量∶预测集数据量
1.6T汽油机123∶134
1.8T汽油机116∶128
2.0T汽油机123∶135

表6

验证机型预测结果多指标评价"

机型评价指标比油耗HCNO x
1.6TR20.98040.97060.9886
RAAE0.08450.12400.0737
RMAE0.80250.87660.5442
1.8TR20.98670.96000.9922
RAAE0.06950.15560.0596
RMAE0.57570.75270.3291
2.0TR20.98910.97880.9781
RAAE0.05920.10550.1032
RMAE0.58270.62510.5152
1 张文. 基于运行工况的发动机基本标定研究[D]. 上海:上海交通大学机械与动力工程学院, 2019.
Zhang Wen. Research on basic engine calibration based on operating conditions[D]. Shanghai:School of Mechanical Engineering, Shanghai Jiao Tong University, 2019.
2 李志辉. 基于模型的电控发动机标定技术[J]. 内燃机与配件, 2020(21): 71-72.
Li Zhi-hui. Model-based electronic-controlled engine calibration technology [J]. Internal Combustion Engine & Parts, 2020(21): 71-72.
3 杜乐. 基于模型的直喷汽油机标定技术研究[D]. 长春:吉林大学机械科学与工程学院, 2013.
Du Le. Research on model-based calibration of GDI engine[D]. Changchun: College of Mechanical Sciences and Engineering,Jilin University, 2013.
4 Martínez M, Palacios H, Velázquez C. Modeling engine fuel consumption and NO x with RBF neural network and MOPSO algorithm[J]. International Journal of Automotive Technology, 2015, 16(6):1041-1049.
5 Francesco D N, Giovanni G, Alfredo G, et al. Volumetric efficiency estimation based on neural networks to reduce the experimental effort in engine base calibration[J]. Fuel, 2019, 244: 31-39.
6 Rask E, Sellnau M. Simulation-based engine calibration: tools, techniques, and applications[J]. SAE Transactions, 2004, 113:821-832.
7 Gao J, Shen T. Online calibration of spark advance for combustion phase control of gasoline SI engines[C]//Seventh International Conference on Intelligent Control and Information Processing (ICICIP), Dali, China, 2016.
8 Carvalho R, Machado G B, Colaço M, et al. Estimating gasoline performance in internal combustion engines with simulation metamodels[J]. Fuel, 2017, 193: 230-240.
9 Zutta E, Acosta D, Andrés D, et al. Development of simulation metamodels to predict the performance and exhaust emission parameters of a spark ignition engine[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2020, 14(1):1-12.
10 侯献军,高寒,席光维, 等. 基于BP神经网络的发动机最佳点火提前角MAP优化分析[J]. 武汉理工大学学报:交通科学与工程版, 2018, 42(3): 353-356.
Hou Xian-jun, Gao Han, Xi Guang-wei, et al. Optimization analysis of engine ignition advance angle MAP based on BP neural network [J]. Journal of Wuhan University of Technology (Traffic Science and Engineering Edition), 2018, 42(3): 353-356.
11 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013(8): 1121-1129.
He Zhi-kun, Liu Guang-bin, Zhao Xi-jing, et al. A review of gaussian process regression methods[J]. Control and Decision, 2013, 28(8): 1121-1129.
12 王阳, 唐朝晖, 王紫勋, 等. 选用改进高斯过程回归模型的碳排放短期预测[J]. 计算机工程与应用, 2018, 54(23): 246-251, 258.
Wang Yang, Tang Chao-hui, Wang Zi-xun, et al. Short-term forecasting of carbon emission by using improved gaussian process regression[J]. Computer Engineering and Applications, 2018, 54(23): 246-251, 258.
13 Keprate A, Chandima Ratnayake R M, Sankararaman S. Experimental validation of the adaptive gaussian process regression model used for prediction of stress intensity factor as an alternative to FEM[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 141(2):1-11.
14 钟美, 赵兵涛, 黄朔. 基于高斯过程回归的燃煤烟气汞排放预测[J]. 动力工程学报, 2016, 36(12): 987-992.
Zhong Mei, Zhao Bing-tao, Huang Shuo. Prediction of Mercury emission from coal-fired flue gas based on Gaussian process regression[J]. Chinese Journal of Power Engineering, 2016, 36(12): 987-992.
15 黄南天, 齐斌, 刘座铭, 等. 采用面积灰关联决策的高斯过程回归概率短期负荷预测[J]. 电力系统自动化, 2018, 42(23): 64-71.
Huang Nan-tian, Qi Bin, Liu Zuo-ming, et al. Gaussian process regression probability short-term load forecasting based on area grey relational decision[J]. Automation of Electric Power Systems, 2018, 42(23): 64-71.
16 任利强, 张立民, 王海鹏, 等. 基于IPSO-GPR的短期负荷区间预测[J]. 计算机工程与设计, 2019, 40(10): 3002-3008.
Ren Li-qiang, Zhang Li-min, Wang Hai-peng, et al. Short-term power load interval forecasting based on improved particle swarm optimization and Gaussian process regression[J]. Computer Engineering and Design, 2019, 40(10): 3002-3008.
17 杜常清, 曹锡良, 何彪, 等. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报: 工学版, 2020, 50(5): 1556-1564.
Du Chang-qing, Cao Xi-liang, He Biao, et al. Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1556-1564.
18 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报: 工学版, 2016, 46(4): 1097-1102.
Zhang Jing, Liu Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1097-1102.
19 杨景明, 马明明, 车海军, 等. 多目标自适应混沌粒子群优化算法[J]. 控制与决策, 2015, 30(12): 2168-2174.
Yang Jing-ming, Ma Ming-ming, Che Hai-jun, et al. Multi-objective adaptive chaotic particle swarm optimization algorithm[J]. Control and Decision, 2015, 30(12): 2168-2174.
20 徐从东, 陈春. 一种自适应动态控制参数的粒子群优化算法[J]. 计算机工程, 2013, 39(10): 203-207.
Xu Cong-dong, Chen Chun. A particle swarm optimization algorithm of adaptive dynamic control parameter[J]. Computer Engineering, 2013, 39(10): 203-207.
21 李建平. 仿真元建模中的拟合方法及其应用研究[D]. 长沙:国防科学技术大学计算机学院, 2007.
Li Jian-ping. Study on fitting methods of simulation metamodelling and its application[D]. Changsha: College of Computer Science and Technology, National University of Defense Technology, 2007.
22 Lee S, Chang J H. On Using Multivariate Polynomial Regression Model with Spectral Difference for Statistical Model-based Speech Enhancement[M]. London: Elsevier North-Holland, Inc., 2016.
23 郭栋, 高松, 王晓原, 等. 轻型车微观排放模型的建立与比较分析[J]. 中南大学学报: 自然科学版, 2012, 43(10): 4123-4128.
Guo Dong, Gao Song, Wang Xiao-yuan, et al. Comparative analysis of light-duty vehicle emission model[J]. Journal of Central South University (Science and Technology), 2012, 43(10): 4123-4128.
[1] 金顺福,郄修尘,武海星,霍占强. 基于新型休眠模式的云虚拟机分簇调度策略及性能优化[J]. 吉林大学学报(工学版), 2020, 50(1): 237-246.
[2] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
[3] 祖象欢,杨传雷,王贺春,王银燕. 船用柴油机废气再循环性能评估及应用[J]. 吉林大学学报(工学版), 2019, 49(3): 805-815.
[4] 杨帅, 冯志炜, 赵治国, 周毅. 不同米勒循环方式对柴油机工作过程影响的一维模拟分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1444-1454.
[5] 刘颖, 张凯, 于向军. 基于代理模型的中空轴式大型静压轴承多目标优化[J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[6] 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[7] 张家旭, 李静. 基于混合优化方法的UniTire轮胎模型参数辨识[J]. 吉林大学学报(工学版), 2017, 47(1): 15-20.
[8] 卢英, 王慧琴, 秦立科. 高大空间建筑火灾精确定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[9] 邵鹏, 吴志健, 周炫余. 基于反向学习的粒子群算法对线性相位低通FIR滤波器的优化[J]. 吉林大学学报(工学版), 2015, 45(3): 907-912.
[10] 孔英秀, 赵丁选, 杨彬, 李天宇, 韩京元. 基于PSO-DE和LMI的鲁棒静态输出反馈控制[J]. 吉林大学学报(工学版), 2013, 43(05): 1375-1380.
[11] 李天宇, 赵丁选, 康怀亮, 张志文, 张正飞, 徐春博. 并联式混合动力装载机的参数匹配[J]. 吉林大学学报(工学版), 2013, 43(04): 916-921.
[12] 郝亮, 徐涛, 崔健, 吉野辰萌. 参数化诱导槽设计的吸能盒结构抗撞性多目标优化[J]. 吉林大学学报(工学版), 2013, 43(01): 39-44.
[13] 张立敏, 申桂香, 张英芝, 王晓峰, 郑珊, 孟书. 小样本数控刀架的可靠性模型[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 96-99.
[14] 胡茂凯, 陈西宏, 张群. 基于匹配滤波的正交频分复用信号盲识别[J]. , 2012, (06): 1581-1586.
[15] 徐涛, 郝亮, 徐天爽, 左文杰, 郭桂凯, 程鹏. 轿车侧碰中车门抗撞性的快速优化 [J]. , 2012, (03): 677-682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!