吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3265-3273.doi: 10.13229/j.cnki.jdxbgxb.20230009

• 交通运输工程·土木工程 • 上一篇    

钢纤维与细非金属纤维混杂UHPC双向板弯曲特性

于跟社1(),邓宗才2()   

  1. 1.中南大学 土木工程学院,长沙 410075
    2.北京工业大学 建筑工程学院,北京 100124
  • 收稿日期:2022-12-20 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 邓宗才 E-mail:yuer19213@163.com;dengzc@bjut.edu.cn
  • 作者简介:于跟社(1972-),男,教授级工程师. 研究方向:道路工程及新型建筑材料.E-mail:yuer19213@163.com
  • 基金资助:
    北京市教委科技重点项目(KZ201810005008)

Bending behaviors of two-way slab of UHPC with steel fiber and micro-nonmetallic fiber

Gen-she YU1(),Zong-cai DENG2()   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.College of Architecture and Civil Engineering,Beijing University of Technology,Beijing 100124,China
  • Received:2022-12-20 Online:2024-11-01 Published:2025-04-24
  • Contact: Zong-cai DENG E-mail:yuer19213@163.com;dengzc@bjut.edu.cn

摘要:

为研究混杂纤维对UHPC弯曲性能的影响,本文将钢纤维与3种新型非金属细纤维混杂,通过7组四边简支方板中心点加载试验,研究了各组试件的受力过程、破坏形态和荷载-挠度曲线,分析了混杂纤维UHPC板的初裂荷载、峰值荷载和弯曲韧性等。结果表明:混杂纤维提高了UHPC板的初裂荷载、峰值荷载、能量吸收值和变形性能;混杂纤维UHPC板的能量吸收值高于单掺1.3%钢纤维(SF);混杂纤维UHPC板的峰后韧性指标T9(5.5)、T14(8)和T19(10.5)均高于单掺1.3%SF和1.8%SF试件,混杂纤维显著提高了残余承载力和变形能力;当SF分别与聚乙烯醇纤维(PVA)、玻璃纤维(GF)和玄武岩纤维(BF)混杂,SF/PVA、SF/BF的混杂增韧效应优于SF/GF。通过能量法、硬化指数和峰后韧性指标可以全面评价混杂纤维UHPC板在不同受力阶段的增强与增韧效应。

关键词: 结构工程, 超高性能混凝土, 混杂纤维, 弯曲韧性, 能量吸收, 韧性指标, 硬化指数, 双向板

Abstract:

To study the influence of hybrid fibers on the flexural properties of UHPC, steel fibers were mixed with three new types of micro-nonmetallic fiber. Through the center point loading test of seven groups of four-sided simply supported two-way slabs, the loading process, failure modes and load-deflection curves of each group were studied, and the initial crack load, peak load and bending toughness of hybrid fiber boards were analyzed. The results show that hybrid fibers can improve the initial crack load, peak load, energy absorption value and deformation performance of UHPC slabs. The energy absorption value of hybrid fiber board is higher than that of steel fiber (SF) doped 1.3%. The post-peak toughness indexes T9(5.5) and T14(8), T19(10.5) of hybrid fiber UHPC slabs were higher than those of single-doped with 1.3%SF and 1.8%SF specimens, and hybrid fiber improved the residual bearing capacity and deformation capacity. When SF is mixed with polyvinyl alcohol fiber (PVA), glass fiber (GF) and basalt fiber (BF), the hybrid toughening effect of SF/PVA and SF/BF is better than SF/GF. Through energy absorption method, hardening index and post-peak toughness index, the strengthening and toughening effects of hybrid fiber UHPC slabs at different loading stages can be evaluated comprehensively.

Key words: structural engineering, ultra-high performance concrete, hybrid fiber, flexural toughness, energy absorption, toughness index, hardening index, two-way slab

中图分类号: 

  • TU375.2

表1

UHPC试件参数表"

序号试件编号纤维类型及掺量
钢纤维/%合成/无机非金属纤维
1S-S1.3PVA0.5-121.30.5%(PVA-12-0.04)
2S-S1.3G0.5-61.30.5%(GF-6-0.014)
3S-S1.3G0.5-121.30.5%(GF-12-0.014)
4S-S1.3G0.5-181.30.5%(GF-18-0.014)
5S-S1.3B0.5-121.30.5%(BF-12-0.02)
6S-S1.31.3-
7S-S1.81.8-

表2

UHPC配合比 (1 m3)"

水胶

砂胶

胶凝材料

用量/kg

河砂/kg减水剂/kg消泡剂/kg

用水量

/kg

0.181.2水泥矿物掺合料10~2020~4040~80112182
556455485388340

表3

钢纤维参数"

项目参数
型号CW01-0.2/13
类别镀铜、无端钩
长度/mm13
直径/mm0.2
长径比65
抗拉强度/MPa2 850

表4

合成纤维与无机非金属纤维参数"

纤维种类长度/mm直径/mm弹性模量/GPa强度/MPa密度/(kg·m-3类别
PVA-12-0.04120.04040>1 6001 640有机
GF-6-0.01460.014721 7002 680无机
GF-12-0.014120.014721 7002 680无机
GF-18-0.014180.014721 7002 680无机
BF-12-0.02120.020902 3002 650无机

图 1

SF、PVA、GF和BF应力-应变关系"

图 2

试验所用纤维"

图 3

试验加载装置"

表5

纤维增强UHPC立方体抗压强度平均值"

序号试件编号抗压强度/MPa
1S-S1.3PVA0.5-12113.2
2S-S1.3G0.5-6127.7
3S-S1.3G0.5-12114.8
4S-S1.3G0.5-18110.0
5S-S1.3B0.5-12116.5
6S-S1.3118.3
7S-S1.8121.1

图 4

方板试件最终破坏形态"

图 5

UHPC试件荷载-挠度曲线"

图 6

典型UHPC试件3阶段荷载-挠度曲线"

表6

初裂、峰值荷载及其对应挠度"

试件编号初裂荷载Pcr/kN峰值荷载Pu/kN初裂挠度δcr/mm峰值挠度δu/mm
S-S1.3PVA0.5-1249.760.50.911.45
S-S1.3G0.5-644.349.50.992.72
S-S1.3G0.5-1234.138.91.414.46
S-S1.3G0.5-1842.847.21.162.27
S-S1.3B0.5-1226.739.10.582.53
S-S1.325.631.81.215.61
S-S1.865.684.62.223.36

图 7

UHPC试件能量-挠度曲线"

表7

不同挠度能量吸收值及残余承载力"

试件编号不同挠度对应能量吸收值/J不同挠度残余承载力/ kN
W2.5W5.0W7.5W10W12.5P5.0P7.5P10P12.5
S-S1.3PVA0.5-12a114.4248.2371.6487.3579.252.348.943.933.4
S-S1.3G0.5-698.8219.4328.5427.3516.744.840.336.227.7
S-S1.3G0.5-1272.3169.4266.7352.5410.938.938. 129.621.2
S-S1.3G0.5-1899.5212.7322.5430.3515.344.343.239.429.7
S-S1.3B0.5-1274.6171.8265.5351.5421.937.936.631.427.1
S-S1.374.2134.5210.5282.5347.526.325.122.819.8
S-S1.8102.2304.9475.8609.7703.577.259.745.732.7

表8

硬化指数和裂后韧性指标值"

试件编号Ish裂后韧性指标
T4(3)T9(5.5)T14(8)T19(10.5)
S-S1.3PVA0.5-121.223.98.813.217.2
S-S1.3G0.5-61.123.67.911.915.5
S-S1.3G0.5-121.143.37.511.415.6
S-S1.3G0.5-181.103.68.012.215.8
S-S1.3B0.5-121.463.79.415.220.9
S-S1.31.243.37.711.815.5
S-S1.81.294.27.59.09.5
理想弹塑性材料1.0491419
1 史金华, 史才军, 欧阳雪, 等. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
Shi Jin-hua, Shi Cai-jun, Ouyang Xue, et al. Compressive elastic modulus of ultra-high performance concrete : a review[J]. Materials Reports, 2021, 35(3): 3067-3075.
2 苏家战, 林毅焌, 陈宝春, 等. 混杂钢纤维UHPC单轴拉伸性能的混杂效应分析[J]. 南昌大学学报: 自然科学版, 2019, 41(4): 358-364.
Su Jia-zhan, Lin Yi-jun, Chen Bao-chun, et al. Hybrid effects of steel fibers on the uniaxial tensile properties of ultra-high performance concrete[J]. Journal of Nanchang University (Engineering & Technology), 2019, 41(4): 358-364 .
3 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报: 自然科学版, 2020, 48(1): 58-68.
Chen Bao-chun, Lin Yi-jun, Yang Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition),2020, 48(1): 58-68.
4 Cengiz O, Turanli L. Comparative evaluation of steel mesh, steel fibre and high-performance polypropylene fibre reinforced shotcrete in panel test[J]. Cement and Concrete Research, 2004, 34(8):1357-1364.
5 Bindiganavile V, Banthia N. Fiber reinforced dry-mix shotcrete with metakaolin[J]. Cement and Concrete Composites, 2001, 23(6): 503-514.
6 朱如如. 混杂纤维对活性粉末混凝土性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2016.
Zhu Ru-ru. Research on the effects of hybrid fiber on reactive powder concrete[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2016.
7 李黎, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的纤维混杂效应研究进展[J]. 应用基础与工程科学学报, 2018, 26(4): 843-853.
Li Li, Cao Ming-li, Feng Jia-qi. Research progress on fiber hybrid effect in fiber reinforced cementitious composite[J]. Journal of Basic Science and Engineering, 2018, 26(4): 843-853.
8 Galobardes I, Silva C L, Figueiredo A, et al. Alternative quality control of steel fibre reinforced sprayed concrete (SFRSC) [J]. Construction and Building Materials, 2019, 223: 1008-1015.
9 Banthia N, Gupta R. Hybrid fiber reinforced concrete(HyFRC): fiber synergy in high strength matrices[J]. Materials and Structures, 2004, 37: 707-716.
10 Bakhshi M, Barsby C, Mobasher B. Comparative evaluation of early age toughness parameters in fiber reinforced concrete[J]. Materials and Structures, 2014, 47(5): 853-872.
11 Chun B, Yoo D. Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete[J]. Composites Part B-Engineering, 2019, 162: 344-360.
12 Wu Z M, Shi C J, He W, et al. Uniaxial compression behavior of ultra-high performance concrete with hybrid steel fiber[J]. Journal of Materials in Civil Engineering, 2016, 28: 0601601712.
13 Kang S T, Choi J I, Koh K T, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Composite Structures, 2016, 145: 37-42.
14 沈荣熹, 王璋水, 崔玉忠. 纤维增强水泥与纤维增强混凝土[M]. 北京: 化学工业出版社, 2006.
15 Nemkumar B, Trottier J F. Test methods for flexural toughness characterization of fiber reinforced concrete: some concerns and a proposition[J]. ACI Materials Journal, 2018, 92(1): 48-57.
16 邓宗才, 曲玖玲, 刘国平. 粗聚烯烃纤维混凝土圆板弯曲韧性和表征方法[J]. 建筑材料学报, 2015, 18(1): 7-11.
Deng Zong-cai, Qu Jiu-ling, Liu Guo-ping. Flexural toughness and its characterization of a new kind of macro-polyolefin fiber reinforced concrete plate[J]. Journal of Building Materials, 2015, 18(1): 7-11.
[1] 周宇,李萌,狄生奎,石贤增,陈东. 变截面两铰拱推力影响线解析解及损伤识别应用[J]. 吉林大学学报(工学版), 2025, 55(2): 664-672.
[2] 王羽岱,王斌,苗福生,马楠. 水热耦合变化下衬砌渠道冻胀响应[J]. 吉林大学学报(工学版), 2025, 55(1): 256-268.
[3] 姜浩,赵正文. 玄武岩纤维网格水泥基复合材料加固RC梁抗剪性能试验[J]. 吉林大学学报(工学版), 2025, 55(1): 211-220.
[4] 韦芳芳,李丽萍,徐庆鹏,赵有正,杨晶晶. 受火双钢板-混凝土组合剪力墙加固后抗震性能试验[J]. 吉林大学学报(工学版), 2025, 55(1): 230-244.
[5] 孙永新,蔺鹏臻,杨子江,冀伟. 考虑黏结-滑移效应的UHPC梁裂缝宽度计算方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2600-2608.
[6] 朱劲松,佟欣瑶,刘晓旭. 装配式小箱梁桥超高性能混凝土免支模湿接缝抗弯性能[J]. 吉林大学学报(工学版), 2024, 54(9): 2568-2580.
[7] 赵金全,周龙,丁永刚,朱熔基. 螺旋箍筋-波纹管浆锚连接锚固性能试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2484-2494.
[8] 杨伟松,张安,许卫晓,李海生,杜轲. 刚度增强型金属连梁阻尼器的抗震性能[J]. 吉林大学学报(工学版), 2024, 54(9): 2469-2483.
[9] 阎奇武,邹忠亮. 减震结构阻尼器优化布置混合算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2267-2274.
[10] 姜封国,周玉明,白丽丽,梁爽. 改进磷虾群算法及其在结构优化中的应用[J]. 吉林大学学报(工学版), 2024, 54(8): 2256-2266.
[11] 张广泰,周乘孝,刘诗拓. 盐渍土环境下纤维锂渣混凝土柱恢复力模型[J]. 吉林大学学报(工学版), 2024, 54(7): 1944-1957.
[12] 刁延松,任义建,杨元强,赵凌云,刘秀丽,刘芸. 带有摩擦耗能组件的可更换钢梁柱拼接节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1643-1656.
[13] 樊学平,刘月飞. 基于改进高斯混合粒子滤波新算法的桥梁极值应力动态预测[J]. 吉林大学学报(工学版), 2024, 54(4): 1038-1044.
[14] 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015.
[15] 樊学平,周衡,刘月飞. 基于Gaussian Copula-贝叶斯动态模型的桥梁构件时变可靠性分析[J]. 吉林大学学报(工学版), 2024, 54(2): 485-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!