吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 954-962.doi: 10.13229/j.cnki.jdxbgxb.20231228
Sheng JIANG1(
),Yi-di WANG1,Rui-lin XIE1,Miao-lei XIA2(
)
摘要:
为提前预测交通事故是否可能发生,提出了基于ViT、门控循环单元(GRU)和MLP-Mixer相结合的交通事故风险预测模型(GST)。通过ViT进行空间和时间上下文关系建模,对预测目标的帧特征进行增强,提高特征的可分辨性;然后,采用GRU提取出时间关联性,再采用GRU和MLP-Mixer相结合的模式对隐藏层帧特征进行增强,建立和优化时空联系模型,并根据相应的特征帧预测单位时间步长的交通事故置信度分数,预测未来事故发生的概率,进而有效区分危险驾驶和事故驾驶的行为,并进行提前预警。最后,在公开数据集DAD和A3D上对本文模型进行验证,结果表明,本文模型识别准确率优于其他先进算法,两个数据集上AP分别达到了59.9%和94.6%,表现出良好的预测性能和泛化能力;在DAD数据集测试中,将本文算法与DSTA算法进行了对比,在AP相近的情况下,本文算法可将事故发生的预测时间提前2.38 s,提升约13%,具有明显的优越性,可为道路危险预警和安全驾驶提供帮助。
中图分类号:
| 1 | 刘嫣然, 孟庆瑜, 郭洪艳, 等.图注意力模式下融合高精地图的周车轨迹预测[J]. 吉林大学学报: 工学版, 2023, 53(3): 792-801. |
| Liu Yan-ran, Meng Qing-yu, Guo Hong-yan, et al. Vehicle trajectory prediction combined with high definition map in graph attention mode[J]. Journal of Jilin University (Engineering and Technology Edition), 2023,53(3):792-801. | |
| 2 | 田彦涛, 黄兴, 卢辉遒, 等. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报: 工学版, 2023, 53(5): 1474-1480. |
| Tian Yan-tao, Huang xing, Lu Hui-qiu, et al. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction[J]. Journal of Jilin University (Engineering and Technology Edition), 2023,53(5): 1474-1480. | |
| 3 | 田彦涛, 许富强, 王凯歌, 等.考虑周车信息的自车期望轨迹预测[J]. 吉林大学学报: 工学版, 2023,53(3): 674-681. |
| Tian Yan-tao, Xu Fu-qiang, Wang Kai-ge, et al. Expected trajectory prediction of vehicle considering surrounding vehicle information[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(3): 674-681. | |
| 4 | 李志慧, 孙雅倩, 陶鹏飞, 等. 交通事故后的交通运行风险状态等级预测方法[J]. 吉林大学学报: 工学版, 2022, 52(1): 127-135. |
| Li Zhi-hui, Sun Ya-qian, Tao Peng-fei, et al. Prediction method of traffic operation risk level after traffic accident[J]. Journal of Jilin University (Engineering and Technology Edition), 2022,52(1):127-135. | |
| 5 | Karim M M, Li Y, Qin R. Towards explainable artificial intelligence (XAI) for early anticipation of traffic accidents[J/OL].[2023-10-20]. |
| 6 | Wu X X, Zhao J W, Wang R Q. Anticipating future relations via graph growing for action prediction[J]AAAI Technical Track on Computer Vision III, 2021, 35(4): 2952-2960. |
| 7 | Chan F H, Chen Y T, Xiang Y, et al. Anticipating accidents in dashcam videos[C]∥Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan,China, 2017: 136-153. |
| 8 | Karim M M, Li Y, Qin R, et al. A dynamic spatial-temporal attention network for early anticipation of traffic accidents[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9590-9600. |
| 9 | Fatima M, Khan M U K, Kyung C M. Global feature aggregation for accident anticipation[C]∥2020 25th International Conference on Pattern Recognition (ICPR),Milan, Italy, 2021: 2809-2816. |
| 10 | Kang M, Lee W, Hwang K, et al. Vision transformer for detecting critical situations and extracting functional scenario for automated vehicle safety assessment[J]. Sustainability, 2022, 14(15): No.9680. |
| 11 | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J/OL].[2023-10-20]. |
| 12 | 张玺君, 余光杰, 崔勇, 等.基于聚类算法和图神经网络的短时交通流预测[J]. 吉林大学学报: 工学版, 2024, 54(6): 1593-1600. |
| Zhang Xi-jun, Yu Guang-Jie, Cui yong, et al. Short-term traffic flow prediction based on clustering algorithm and Graph neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(6): 1593-1600. | |
| 13 | Zhao L, Song Y, Zhang C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858. |
| 14 | Bao W, Yu Q, Kong Y. Uncertainty-based traffic accident anticipation with spatio-temporal relational learning[J/OL]. [2023-10-22]. Computer Vision and Pattern Recognition, |
| 15 | Fusco F, Pascual D, Staar P. pNLP-Mixer: an efficient all-MLP architecture for language[J/OL].[2023-10-22]. |
| 16 | Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J/OL].[2023-10-22]. |
| 17 | Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]∥2017 IEEE international conference on image processing (ICIP), Beijing, China, 2017: 3645-3649. |
| 18 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008. |
| 19 | 张龙, 徐天鹏, 王朝兵, 等.基于卷积门控循环网络的齿轮箱故障诊断[J]. 吉林大学学报: 工学版,2022, 52(2): 368-376. |
| Zhang Long, Xu Tian-peng, Wang Chao-bing, et al. Gearbox fault diagnosis baed on convolutional gated recurrent network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2):368-376. | |
| 20 | Yao Y, Xu M, Wang Y, et al. Unsupervised traffic accident detection in first-person videos[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019: 273-280. |
| 21 | Wang T, Chen K, Chen G, et al. GSC: A Graph and Spatio-temporal Continuity Based Framework for Accident Anticipation[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2294-2261. |
| [1] | 李立,鲍宇健,杨文臣,楚庆玲,汪贵平. 路侧多源感知数据集规范化构建方法[J]. 吉林大学学报(工学版), 2025, 55(2): 529-536. |
| [2] | 杨楠,肖军. 序列二次规划算法下城市智能交通运行节能优化控制[J]. 吉林大学学报(工学版), 2024, 54(8): 2223-2228. |
| [3] | 李立,吴晓强,杨文臣,周瑞杰,汪贵平. 基于路侧毫米波雷达的群体车辆目标识别与跟踪[J]. 吉林大学学报(工学版), 2024, 54(7): 2104-2114. |
| [4] | 张玺君,余光杰,崔勇,尚继洋. 基于聚类算法和图神经网络的短时交通流预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1593-1600. |
| [5] | 井佩光,田雨豆,汪少初,李云,苏育挺. 基于动态扩散图卷积的交通流量预测算法[J]. 吉林大学学报(工学版), 2024, 54(6): 1582-1592. |
| [6] | 杨秀建,贾晓寒,张生斌. 考虑汽车队列动态特性的混合交通流特性[J]. 吉林大学学报(工学版), 2024, 54(4): 947-958. |
| [7] | 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726. |
| [8] | 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480. |
| [9] | 张惠臻,高正凯,李建强,王晨曦,潘玉彪,王成,王靖. 基于循环神经网络的城市轨道交通短时客流预测[J]. 吉林大学学报(工学版), 2023, 53(2): 430-438. |
| [10] | 高海龙,徐一博,侯德藻,王雪松. 基于深度异步残差网络的路网短时交通流预测算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3458-3464. |
| [11] | 高明华,杨璨. 基于改进卷积神经网络的交通目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1353-1361. |
| [12] | 张龙,徐天鹏,王朝兵,易剑昱,甄灿壮. 基于卷积门控循环网络的齿轮箱故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 368-376. |
| [13] | 邝先验,罗会超,钟蕊,欧阳鹏. 基于天牛须小波神经网络的公交到站时间预测[J]. 吉林大学学报(工学版), 2022, 52(1): 110-117. |
| [14] | 张健,吴坤润,杨敏,冉斌. 智能网联环境下交叉口双环自适应控制模型[J]. 吉林大学学报(工学版), 2021, 51(2): 541-548. |
| [15] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
|
||