吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1353-1361.doi: 10.13229/j.cnki.jdxbgxb20210380

• 交通运输工程·土木工程 • 上一篇    

基于改进卷积神经网络的交通目标检测方法

高明华(),杨璨   

  1. 华东交通大学 信息工程学院,南昌 330013
  • 收稿日期:2021-04-27 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:高明华(1965-),男,副教授,硕士生导师. 研究方向:深度学习,交通目标检测,移动通信.E-mail:397385442@qq.com
  • 基金资助:
    国家自然科学基金项目(61971191)

Traffic target detection method based on improved convolution neural network

Ming-hua GAO(),Can YANG   

  1. School of Information,East China Jiaotong University,Nanchang 330013,China
  • Received:2021-04-27 Online:2022-06-01 Published:2022-06-02

摘要:

针对现有交通场景中目标检测方法精确度较低、对设备性能要求高的问题,提出了一种基于改进YOLOv3网络的目标检测方法。针对完全交并比函数在特殊情况下对预测框与真实框重合程度衡量不准确的问题,对其进行改进,提出了一种新的交并比函数PIOU,提升了检测精度。通过增加检测尺度,实现了特征图细化和增强深、浅层语义信息融合,达到增强小目标检测能力的目的。通过添加SE注意力机制模块,使模型更重视学习重要通道的特征信息;通过融合局部特征与全局特征获得新的特征图,进一步提高了检测精度。针对数据集特性提出了M-YOLT增强方法,改善了小目标检测性能。通过对网络进行结构性通道剪枝降低了设备性能要求,并采用Matrix NMS替换NMS以提升检测速度。实验结果表明:改进的方法在改善检测效果的同时降低了检测时间,在KITTI数据集上的测试达到最高88.4%的mAP,比原始YOLOv3提升了6.3%;或在保持86.3%mAP的情况下使平均检测时间下降至8.6 ms。该方法在对设备硬件要求较低的情况下能够实现较好的检测效果。

关键词: 智能交通, 目标检测, 深度学习, 卷积神经网络, YOLO

Abstract:

In view of the problems of low accuracy and high requirements for equipment performance of existing target detection methods in traffic scenes, a target detection method based on improved YOLOv3 network is proposed.A new IOU(Intersection over Union) function is proposed to improve the CIOU(Complete Intersection over Union)function, as CIOU function can not accurately measure the degree of coincidence between the prediction box and the real box under special circumstances. By increasing the detection scale, the feature mAP is refined and the deep and shallow semantic information fusion is enhanced to enhance the small target detection ability; by adding SE(Squeeze-and-Excitation) attention mechanism, the model pays more attention to learning the feature information of important channels; according to the characteristics of the data set, M-YOLT enhancement method was used to improve the performance of small target detection. Through the structural channel pruning of the network, the equipment performance requirements are reduced, and Matrix NMS is used to replace NMS to improve the detection speed. The experimental results show that the proposed method can improve the detection effect and reduce the detection time. The test on KITTI data set reaches 88.4% mAP, or the average detection time of each image can be reduced to 8.6 ms while maintaining 86.3% mAP. This method can achieve better detection effect with lower hardware requirements.

Key words: intelligent transportation, target detection, deep learning, convolutional neural networks(CNN), YOLO

中图分类号: 

  • TP391.4

图1

改进YOLOv3网络结构"

图2

SE注意力模块结构"

图3

SPP模块结构"

图4

相对位置不同对CIOU的影响"

图5

CIOU恒定时,θ越小重合程度越高"

图6

原始图片和缩放后图片"

图7

M-YOLT裁剪拼接示意图"

图8

函数对比"

表1

训练所得网络的mAP"

网络PrecisionRecallmAP/%F1mAP提升/%平均每张图片检测时间/ms
Yolov30.8120.76782.10.8010.012.3
4分支YOLOv3 (A)0.8100.78483.20.8111.116.0
A+SPP(B)0.8110.79184.00.8170.816.5
B+SE+CIOU(C)0.8140.81485.10.8211.116.7
C+PIOU(D)0.8160.81485.40.8220.316.7
D+Mish(E)0.8190.83086.60.8311.216.8
E+M-YOLT(F)0.8340.84788.40.8471.816.9
F+剪枝(G)0.8110.82286.30.825-2.112.1
G+Matrix NMS0.8110.82286.30.8260.08.6

图9

目标检测结果对比"

图10

中国交通标志数据集检测结果对比"

图11

PIOU仿真结果"

1 Ren S Q, He K M, Girshickr R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
2 邵毅明,屈治华,邓天民,等. 基于加权密集连接卷积网络的快速交通标志检测[J]. 交通运输系统工程与信息, 2020, 20(2): 48-54.
Shao Yi-ming, Qu Zhi-hua, Deng Tian-min, et al. Fast traffic sign detection based on weighted densely connected convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 48-54.
3 张富凯, 杨峰, 李策. 基于改进YOLOv3的快速车辆检测方法[J]. 计算机工程与应用, 2019, 55(2): 12-20.
Zhang Fu-kai, Yang Feng, Li Ce. Fast vehicle detection method based on improved YOLOv3[J]. Computer Engineering and Application, 2019, 55(2): 12-20.
4 张江永, 徐智勇, 张建林, 等. 基于敏感度的YOLO网络集成剪枝算法[J]. 计算机工程, 2021, 47(9): 59-68.
Zhang Jiang-yong, Xu Zhi-yong, Zhang Jian-lin, et al. Sensitivity-based Integrated Pruning Algorithm for YOLO Network[J]. Computer Engineering, 2021, 47(9): 59-68.
5 贺超雷, 毕秀丽, 肖斌. 一种基于Zernike矩的局部特征检测方法[J]. 计算机科学, 2020, 47(2):135-142.
He Chao-lei, Bi Xiu-li, Xiao Bin. Zernike moment based approach for local feature detection [J]. Computer Science, 2020,47 (2): 135-142.
6 Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
7 宋欣,李奇,解婉君,等. YOLOv3-ADS:一种基于YOLOv3的深度学习目标检测压缩模型[J]. 东北大学学报: 自然科学版, 2021, 42(5): 609-615.
Song Xin, Li Qi, Xie Wan-jun, et al. YOLOv3-ADS:a compression model for deep learning object detection based on YOLOv3[J]. Journal of Northeastern University(Natural Science), 2021,42(5): 609-615.
8 Ophoff T, Puttemans S, Kalogirou V, et al.Vehicle and vessel detection on satellite imagery: a comparative study on single-shot detectors[J]. Remote Sensing, 2020, 12(7): 1217-1238.
9 李宇杰, 李煊鹏, 张为公. 基于视觉的三维目标检测算法研究综述[J]. 计算机工程与应用, 2020, 56(1): 11-24.
Li Yu-jie, Li Xuan-peng, Zhang Wei-gong. Survey on vision-based 3D object detection methods [J]. Computer Engineering and Applications, 2020, 56(1): 11-24.
10 张飞翔, 余学儒, 何卫锋, 等. 结合改进的损失函数与多重范数的人脸识别[J]. 计算机工程与应用, 2020, 56(24): 144-150.
Zhang Fei-xiang, Yu Xue-ru, He Wei-feng, et al. Face recognition with improved loss function and multiple-norm[J]. Computer Engineering and Applications, 2020, 56(24): 144-150.
[1] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[2] 欧阳继红,郭泽琪,刘思光. 糖尿病视网膜病变分期双分支混合注意力决策网络[J]. 吉林大学学报(工学版), 2022, 52(3): 648-656.
[3] 王学智,李清亮,李文辉. 融合迁移学习的土壤湿度预测时空模型[J]. 吉林大学学报(工学版), 2022, 52(3): 675-683.
[4] 李向军,涂洁莹,赵志宾. 基于多尺度融合卷积神经网络的熔解曲线有效性分类[J]. 吉林大学学报(工学版), 2022, 52(3): 633-639.
[5] 张龙,徐天鹏,王朝兵,易剑昱,甄灿壮. 基于卷积门控循环网络的齿轮箱故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 368-376.
[6] 宋林,王立平,吴军,关立文,刘知贵. 基于信息物理融合和数字孪生的可靠性分析[J]. 吉林大学学报(工学版), 2022, 52(2): 439-449.
[7] 曹洁,马佳林,黄黛麟,余萍. 一种基于多通道马尔可夫变迁场的故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(2): 491-496.
[8] 高文志,王彦军,王欣伟,张攀,李勇,董阳. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 417-424.
[9] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[10] 曲优,李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(1): 162-173.
[11] 刘桂霞,裴志尧,宋佳智. 基于深度学习的蛋白质⁃ATP结合位点预测[J]. 吉林大学学报(工学版), 2022, 52(1): 187-194.
[12] 邝先验,罗会超,钟蕊,欧阳鹏. 基于天牛须小波神经网络的公交到站时间预测[J]. 吉林大学学报(工学版), 2022, 52(1): 110-117.
[13] 张杰,景雯,陈富. 基于被动分簇算法的即时通信网络协议漏洞检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2253-2258.
[14] 钟辉,康恒,吕颖达,李振建,李红,欧阳若川. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1838-1844.
[15] 董丽丽,杨丹,张翔. 基于深度学习的大规模语义文本重叠区域检索[J]. 吉林大学学报(工学版), 2021, 51(5): 1817-1822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!