吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1215-1224.doi: 10.13229/j.cnki.jdxbgxb.20230760

• 车辆工程·机械工程 • 上一篇    下一篇

混合动力车辆换挡的实时滚动优化控制方法

张涛(),林黄达(),余中军   

  1. 海军工程大学 电磁能技术全国重点实验室,武汉 430033
  • 收稿日期:2023-07-19 出版日期:2025-04-01 发布日期:2025-06-19
  • 通讯作者: 林黄达 E-mail:20000519@nue.edu.cn;lindalena23@nue.edu.cn
  • 作者简介:张涛(1995-),男,博士研究生. 研究方向:汽车最优控制,车辆节能. E-mail: 20000519@nue.edu.cn
  • 基金资助:
    国家自然科学基金项目(52077217)

Real-time rolling optimization control method for gearshift of hybrid electric vehicles

Tao ZHANG(),Huang-da LIN(),Zhong-jun YU   

  1. National Key Laboratory of Electromagnetic Energy,Naval University of Engineering,Wuhan 430033,China
  • Received:2023-07-19 Online:2025-04-01 Published:2025-06-19
  • Contact: Huang-da LIN E-mail:20000519@nue.edu.cn;lindalena23@nue.edu.cn

摘要:

针对混合动力车辆挡位优化所形成的混合整数非线性最优控制难以求解的问题,本文提出了一种实时滚动优化控制方法。首先,以车辆动力性能、等效燃油消耗最小和驾驶性能为目标函数,并结合模型预测控制滚动优化的思想构建实时控制方法。其次,基于车辆动力系统的二次拟合,利用极小值原理得到能量分配的解析解,并在每一时刻采用枚举法优化挡位。最后,滚动向前优化。标准工况下的仿真结果表明:①本文方法可以提高计算效率,计算时间在50 ms以内,具有在线应用的潜力;②与动态规划方法相比,可以实现接近全局最优的燃油经济性。

关键词: 车辆工程, 混合动力车辆, 燃油经济性, 挡位控制, 模型预测控制, 解析解

Abstract:

The online optimization method was proposed to solve the problem of hybrid integer nonlinear optimal control in hybrid electric vehicle gearing optimization. Firstly, the real-time control method was constructed based on the rolling optimization idea of model predictive control. The objective function was the total weighted cost associated with vehicle dynamic performance, minimum equivalent fuel consumption, and drivability. Secondly, based on the model fitting of the vehicle power system, the analytical solution of energy distribution was obtained by using the minimum principle, and the gear was optimized by the enumeration method at every moment. The simulation results under standard working conditions show that:①the proposed method can improve the calculation efficiency, and the calculation time is less than 50 ms, which has the potential of online application;②Compared with the dynamic programming method, the proposed method can achieve close to the global optimal fuel economy.

Key words: vehicle engineering, hybrid electric vehicles, fuel economy, gear control, model predictive control, analytical solution

中图分类号: 

  • U461.8

图1

并联式混合动力系统拓扑图"

表1

车辆参数表"

部件参数数值
车辆质量m/kg1 623
滚动阻力系数f0.014
空气阻力系数CD0.25
迎风面积A/m22.46
半径r /m0.336
发动机最大功率/kW90
最大转矩/(N·m)175
电机/发电机最大转矩/(N·m)200
最大功率/kW30
变速箱传动比

4.212/2.637/1.8/

1.386/1/0.772

主减速3.32
电池配置1P 72S
电池容量/(A·h)5.3
开路电压/V262

图2

发动机燃油消耗率试验数据和拟合结果"

图3

电池-电机组试验数据和拟合结果"

图4

迭代过程中的协态变量和对应的终端函数值"

图5

两个标准工况下的收敛结果"

图6

协态变量终值与目标值的差值随协态变量初值的变化"

图7

本文所提的能量管理策略框架"

图8

UDDS仿真工况"

图9

DP方法与本文方法的对比"

图10

NEDC仿真工况"

图11

DP方法与本文方法的对比"

表2

仿真结果"

工况方法SoC终端值燃油消耗/g燃油经济性/%
UDDS本文0.495 9245.593.5
DP0.499 2230100
NEDC本文0.499 6258.193
DP0.498 9241.2100
[1] 宋大凤, 杨丽丽, 曾小华, 等.基于行驶工况合成的混合动力汽车电池寿命优化[J]. 吉林大学学报: 工学版, 2021, 51(3): 781-791.
Song Da-feng, Yang Li-li, Zeng Xiao-hua, et al. Battery life optimization of hybrid electric vehicle based on driving cycle construction[J].Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 781-791.
[2] Duhr P, Christodoulou G, Balerna C, et al. Time-optimal gearshift and energy management strategies for a hybrid electric race car[J]. Applied Energy, 2021, 282(6): No.115980.
[3] Wang Y, Wu Z, Chen Y, et al. Research on energy optimization control strategy of the hybrid electric vehicle based on Pontryagin's minimum principle[J]. Computers & Electrical Engineering, 2018, 72: 203-213.
[4] Sun C, Hu X, Sun F, et al. Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology: A publication of the IEEE Control Systems Society, 2015, 23(3):1197-1204.
[5] 张风奇, 胡晓松, 许康辉, 等. 混合动力汽车模型预测能量管理研究现状与展望[J]. 机械工程学报, 2019, 55(10): 86-108.
Zhang Feng-qi, Hu Xiao-song, Xu Kang-hui, et al. Current status and prospects for model predictive energy management in hybrid electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(10): 86-108.
[6] 赵菲, 王建, 张天雷, 等. 云控场景下车辆队列的模型预测控制方法[J]. 汽车工程, 2022, 44(2): 179-189.
Zhao Fei, Wang Jian, Zhang Tian-lei, et al. Model predictive control method for vehicle platoon under cloud control scenes[J]. Automotive Engineering, 2022, 44(2): 179-189.
[7] Shen D, Lim C, Shi P, et al. Energy management of fuel cell hybrid vehicle based on partially observable Markov decision process[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 318-330.
[8] Xie S, Hu X, Xin Z, et al. Pontryagin's minimum principle based model predictive control of energy management for a plug-in hybrid electric bus[J]. Applied Energy, 2019, 236(15): 893-905.
[9] Razi M, Murgovski N, Mckelvey T, et al. Predictive energy management of hybrid electric vehicles via multi-layer control[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 6485-6499.
[10] 郭露露. 面向智能节能的汽车实时优化控制及实车验证[D]. 长春:吉林大学通信工程学院, 2019.
Guo Lu-lu. Real-time optimal automotive control for intelligent energy conservation and road test[D]. Changcun:College of Communication Engineering, Jilin University, 2019.
[11] Guo L, Gao B, Liu Q, et al. On-line optimal control of the gearshift command for multi-speed electric vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1519-1530.
[12] Nassar M, Shaltout M, Hegazi H. Multi-objective optimum energy management strategies for parallel hybrid electric vehicles: a comparative study[J]. Energy Conversion and Management, 2023, 277:No.116683.
[13] Zhang F, Hu X, Liu T, et al. Computationally efficient energy management for hybrid electric vehicles using model predictive control and vehicle-to-vehicle communication[J]. IEEE Transactions on Vehicular Technology, 2020, 70(1): 237-250.
[14] 莫浩楠, 杨中平, 林飞, 等.有轨电车基于工况识别的强化学习能量管理策略[J]. 电工技术学报, 2021, 36(19): 4170-4182.
Mo Hao-nan, Yang Zhong-ping, Lin Fei, et al. Reinforcement learning energy management strategy of tram based on condition identification[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4170-4182.
[15] Hou J, Yao D, Wu F, et al. Online vehicle velocity prediction using an adaptive radial basis function neural network[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3113-3122.
[16] 解少博, 屈鹏程, 李嘉诚, 等. 跟驰场景中网联混合电动货车速度规划和能量管理协同控制的研究[J]. 汽车工程, 2022, 44(8): 1136-1143.
Xie Shao-bo, Qu Peng-cheng, Li Jia-cheng, et al. Study on coordinated control of speed planning and energy management for connected hybrid electric truck in vehicle following scene[J]. Automotive Engineering, 2022, 44(8): 1136-1143.
[17] 李亚鹏, 唐小林, 胡晓松. 基于分层式控制的混合动力汽车生态驾驶研究[J]. 汽车工程, 2023, 45(4): 551-560.
Li Ya-peng, Tang Xiao-lin, Hu Xiao-song. Study on eco-driving of PHEVs based on hierarchical control strategy[J]. Automotive Engineering, 2023, 45(4): 551-560.
[18] 杨业, 张幽彤, 张彪, 等. 基于等效因子优化的插电式混合动力客车自适应能量管理策略[J]. 汽车工程, 2020, 42(3): 292-298.
Yang Ye, Zhang You-tong, Zhang Biao, et al. Adaptive energy management strategy for plug-in hybrid electric bus based on equivalent factor optimization[J]. Automotive Engineering, 2020, 42(3): 292-298.
[19] 王哲, 谢怡, 臧鹏飞, 等.基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
[20] Rezaei A, Burl J B, Zhou B. Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2017, 26(6): 2198-2205.
[1] 卢荡,索艳茹,孙宇航,吴海东. 基于无量纲格式的轮胎侧倾侧偏力学特性预测[J]. 吉林大学学报(工学版), 2025, 55(5): 1516-1524.
[2] 王旭. 四足机器人运动及稳定控制关键技术综述[J]. 吉林大学学报(工学版), 2025, 55(5): 1483-1496.
[3] 李伟东,马草原,史浩,曹衡. 基于分层强化学习的自动驾驶决策控制算法[J]. 吉林大学学报(工学版), 2025, 55(5): 1798-1805.
[4] 高镇海,郑程元,赵睿. 真实与虚拟场景下自动驾驶车辆的主动安全性验证与确认综述[J]. 吉林大学学报(工学版), 2025, 55(4): 1142-1162.
[5] 宫洵,任航,张华霖,汪介瑜,胡云峰,孙耀. 冬季网联纯电动汽车热泵空调生态制热控制方法[J]. 吉林大学学报(工学版), 2025, 55(3): 820-828.
[6] 卢荡,王晓凡,吴海东. TWEEL轮胎接地压力均布特性分析[J]. 吉林大学学报(工学版), 2025, 55(3): 811-819.
[7] 曲俊龙,史文库,玄圣夷,陈志勇. 面向汽车传动系统多挡共振的多级吸振器参数设计方法[J]. 吉林大学学报(工学版), 2025, 55(2): 444-455.
[8] 朱冰,范天昕,赵文博,李伟男,张培兴. 自动驾驶汽车连续测试场景复杂度评估方法[J]. 吉林大学学报(工学版), 2025, 55(2): 456-467.
[9] 陈鑫,张祥源,武子涛,于贵申,杨立飞. 工艺顺序对车用铝薄板胶-PFSSW接头拉剪性能的影响[J]. 吉林大学学报(工学版), 2025, 55(2): 468-475.
[10] 王军年,曹宇靖,罗智仁,李凯旋,赵文伯,孟盈邑. 基于双目视觉的道路水深在线检测算法[J]. 吉林大学学报(工学版), 2025, 55(1): 175-184.
[11] 谭草,任浩鑫,葛文庆,宋亚东,陆佳瑜. 直驱阀控液压振动平台改进自抗扰控制[J]. 吉林大学学报(工学版), 2025, 55(1): 84-92.
[12] 胡宏宇,张争光,曲优,蔡沐雨,高菲,高镇海. 基于双分支和可变形卷积网络的驾驶员行为识别方法[J]. 吉林大学学报(工学版), 2025, 55(1): 93-104.
[13] 李寿涛,杨路,屈如意,孙鹏鹏,于丁力. 基于模型预测控制的滑移率控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2687-2696.
[14] 吴量,顾义凡,邢彪,马芳武,倪利伟,贾微微. 基于线性二次型调节器的四轮转向与分布式集成控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2414-2422.
[15] 王玉海,李晓之,李兴坤. 面向高速工况的混合动力卡车预见性节能算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2121-2129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .