吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1298-1306.doi: 10.13229/j.cnki.jdxbgxb.20230725
Xiang-hai MENG1(
),Guo-rui WANG1,Ming-yang ZHANG1,Bi-jiang TIAN1,2
摘要:
为提升交通事故预测模型的精度并减少鲁棒性,利用Stacking集成策略构建事故预测模型。首先,构建基于决策树、极端随机树等8种机器学习模型的单一事故预测模型,利用MIC检验与图着色法度量各事故预测模型的相似度,选取相似度低、多样性强的模型参与集成;其次,对单一事故预测模型结果进行Box-Cox变换,并利用特征加权法为各单一模型分别赋予不同的权重;最后,选用BP神经网络、Logistic回归等模型作为元学习器进行Stacking集成。研究结果表明:元学习器选用BP神经网络的集成模型预测精度高于其他集成模型,相较于预测精度最高的单一事故预测模型,集成模型的MAE、RMSE分别降低24%和14%,R2提高6%。
中图分类号:
| 1 | 张显强, 贺中华, 梁永娜, 等. 贵州省道路分形特征及其对交通事故影响机制[J]. 公路, 2017, 62(6):197-203. |
| Zhang Xian-qiang, He Zhong-hua, Liang Yong-na, et al. Fractal characteristics of road and its impact mechanism on traffic accidents in Guizhou Province[J]. Highway, 2017, 62(6): 197-203. | |
| 2 | Macedo M R, Maia M L A, Rabbani E R K, et al. Traffic accident prediction model for rural highways in Pernambuco[J]. Case Studies on Transport Policy, 2022, 10(1): 278-286. |
| 3 | 马壮林, 邵春福, 李霞. 基于Logistic模型的公路隧道交通事故严重程度的影响因素[J]. 吉林大学学报:工学版,2010, 40(2): 423-426. |
| Ma Zhuang-lin, Shao Chun-fu, Li Xia. Analysis of factors affecting accident severity in highway tunnels based on Logistic model[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(2): 423-426. | |
| 4 | 陈英, 袁华智, 黄中祥, 等. 零截尾负二项模型在交叉口事故预测中的应用[J]. 中国公路学报, 2020, 33(4): 146-154. |
| Chen Ying, Yuan Hua-zhi, Huang Zhong-xiang, et al. Modeling intersection traffic crashes using a zero-truncated negative binomial model[J]. China Journal of Highway and Transport, 2020, 33(4): 146-154. | |
| 5 | Roland J, Way P D, Firat C, et al. Modeling and predicting vehicle accident occurrence in Chattanooga, Tennessee[J]. Accident Analysis & Prevention, 2021(149): 105-117. |
| 6 | Ihueze C C, Onwurah U O. Road traffic accidents prediction modelling: an analysis of Anambra State, Nigeria[J]. Accident Analysis & Prevention, 2018(7), 112: 21-29. |
| 7 | 谢学斌, 孔令燕. 基于ARIMA和XGBoost组合模型的交通事故预测[J]. 安全与环境学报, 2021, 21(1):277-284. |
| Xie Xue-bin, Kong Ling-yan. On the ways to the traffic accident prediction based on the ARIMA and XGBoost combined model[J]. Journal of Safety and Environment, 2021, 21(1): 277-284. | |
| 8 | 纪俊红, 昌润琪, 温廷新. 基于GSK-AdaBoost-LightGBM的交通事故死亡人数预测研究[J]. 安全与环境工程, 2021, 28(1): 24-28. |
| Ji Jun-hong, Chang Run-qi, Wen Ting-xin. Prediction of traffic accident death toll based on GSK-AdaBoost-LightGBM[J]. Safety and Environmental Engineering, 2021, 28(1): 24-28. | |
| 9 | Vilaa M, Macedo E, Coelho M C. A rare event modelling approach to assess injury severity risk of vulnerable road users[J]. Safety, 2019, 5(2): 29-38. |
| 10 | Xing L, He J, Li Y, et al. Comparison of different models for evaluating vehicle collision risks at upstream diverging area of toll plaza[J]. Accident Analysis and Prevention, 2020(135): 86-97. |
| 11 | Kwon O H, Rhee W, Yoon Y, et al. Application of classification algorithms for analysis of road safety risk factor dependencies[J]. Accident Analysis and Prevention, 2015(75): 1-15. |
| 12 | Zeng K H, Chou S H, Chan F H, et al. Agent-centric risk assessment: accident anticipation and risky region localization[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2222-2230. |
| 13 | 宁静, 佘红艳, 赵东, 等. 一种路网级交通事故风险预测方法[J]. 北京邮电大学学报, 2022, 45(2): 72-78. |
| Ning Jing, She Hong-yan, Zhao Dong, et al. A road-level traffic accident risk prediction method[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 72-78. | |
| 14 | Lin L, Wang Q, Sadek A W. A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction[J]. Transportation Research Part C: Emerging Technologies, 2015(55): 444-459. |
| 15 | 孙棣华, 唐亮, 付青松, 等. 基于量子神经网络的道路交通事故预测[J]. 交通运输系统工程与信息, 2010, 10(5): 104-109. |
| Sun Di-hua, Tang Liang, Fu Qing-song, et al. Road traffic accidents forecasting based on quantum neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(5): 104-109. | |
| 16 | 覃薇. 基于负二项回归分析的高速公路神经网络事故预测模型[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2017. |
| Qin Wei. Neural network crash prediction model of freeway based on negative binomial regression analysis[D]. Harbin: School of Transportation Science and Engineering of Harbin Institute of Technology, 2017. | |
| 17 | 范中洲, 赵羿, 周宁, 等. 基于灰色BP神经网络组合模型的水上交通事故数预测[J]. 安全与环境学报, 2020, 20(3): 857-861. |
| Fan Zhong-zhou, Zhao Yi, Zhou Ning, et al. Integrated model for forecasting waterway traffic accidents based on the Gray-BP neural network[J]. Journal of Safety and Environment, 2020, 20(3): 857-861. |
| [1] | 金庆良,周鑫森,陈翼,吴承文. 基于群智能增强核极限学习机的创新人才预测模型[J]. 吉林大学学报(工学版), 2025, 55(5): 1763-1771. |
| [2] | 赵秀芝,谢德红. 基于噪声鲁棒性特征提取的普洱茶品种鲁棒判别方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1756-1762. |
| [3] | 梅生启,刘晓东,王兴举,李旭峰,武腾,程相旭. 基于参数相关性分析和机器学习算法的高强混凝土徐变预测[J]. 吉林大学学报(工学版), 2025, 55(5): 1595-1603. |
| [4] | 岳昊,常笑,刘建业,曲秋莳. 引入车辆窗的定制公交线路优化[J]. 吉林大学学报(工学版), 2025, 55(4): 1266-1274. |
| [5] | 吴文静,邓淳淳,贾洪飞,孙舒航. 内涝影响下路网畅通可靠度评估及关键路段识别[J]. 吉林大学学报(工学版), 2025, 55(4): 1250-1257. |
| [6] | 王军,司昌馥,王凯鹏,付强. 融合集成学习技术和PSO-GA算法的特征提取技术的入侵检测方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1396-1405. |
| [7] | 戴银飞,周秀贞,刘玉宝,刘志远. 基于CAN总线数据的车载网络入侵检测系统[J]. 吉林大学学报(工学版), 2025, 55(3): 857-865. |
| [8] | 马书红,张俊杰,陈西芳,廖国美. 利用出租车时序数据识别城市功能区[J]. 吉林大学学报(工学版), 2025, 55(2): 603-613. |
| [9] | 高天洋,胡大伟,姜瑞森,吴雪,刘慧甜. 基于模块化车辆的区域灵活接驳公交线路优化[J]. 吉林大学学报(工学版), 2025, 55(2): 537-545. |
| [10] | 李昱燃,汪飞,朱才华,韩飞,李岩. 污染天气居民通勤模式选择影响因素的链式效用[J]. 吉林大学学报(工学版), 2025, 55(2): 577-590. |
| [11] | 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197. |
| [12] | 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637. |
| [13] | 郑长江,陶童统,陈志超. 基于流量可调重分配的级联失效模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2441-2450. |
| [14] | 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222. |
| [15] | 闫云娟,查伟雄,石俊刚,严丽平. 基于随机充电需求的充电桩优化双层模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2238-2244. |
|