吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1396-1405.doi: 10.13229/j.cnki.jdxbgxb.20230751
Jun WANG(
),Chang-fu SI,Kai-peng WANG,Qiang FU(
)
摘要:
针对工业网络的安全问题,提出了一种新的入侵检测方法,方法的具体创新之处分为两点。首先,在处理数据特征过程中,针对原始数据维度较高的问题,提出一种参数动态调整的粒子群优化-遗传混合算法,用于特征提取,成功筛选出了对模型训练有意义的特征子集,加快了模型训练速度。其次,在构建机器学习模型时,使用了堆叠集成学习框架对多个模型的输出结果进行泛化,以获得整体预测精度的提升。共在两个数据集上验证了本文方法的检测性能,试验结果表明:在公开的入侵检测数据集CICDS-2017上的检测精确度达到了95%,在由美国密西西比州立大学的Lan Turnipseed从天然气管道控制系统收集到的真实工业数据集上也达到了93%的精确度。
中图分类号:
| 1 | Gaikwad D P, Thool R C.Intrusion detection system using bagging ensemble method of machine learning[C]∥International Conference on Computing Communication Control and Automation, Pune, India,2015: 291-295. |
| 2 | Shen Y, Zheng K, Wu C, et al. An ensemble method based on selection using bat algorithm for intrusion detection[J]. The Computer Journal, 2018, 61(4): 526-538. |
| 3 | Bhati B S, Chugh G, Al‐Turjman F, et al. An improved ensemble based intrusion detection technique using XGBoost[J]. Transactions on Emerging TeleCommunications Technologies, 2021, 32(6): No.e4076. |
| 4 | Mnih V, Heess N, Graves A, et al. Recurrent models of visual attention[J]. Advances in Neural Information Processing Systems, 2014, 27:1-12. |
| 5 | Ahmad I. Feature selection using particle swarm optimization in intrusion detection[J]. International Journal of Distributed Sensor Networks, 2015, 11(10):No. 806954. |
| 6 | Dickson A, Thomas C. Improved PSO for optimizing the performance of intrusion detection systems[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(5): 6537-6547. |
| 7 | Aziz M R, Alfoudi A S. Feature selection of the anomaly network intrusion detection based on restoration particle swarm optimization[J]. International Journal of Intelligent Engineering & Systems, 2022, 15(5):592-600. |
| 8 | Wei P, Li Y F, Zhang Z, et al. An optimization method for intrusion detection classification model based on deep belief network[J]. IEEE Access, 2019, 7: 87593-87605. |
| 9 | Panigrahi R, Borah S. A detailed analysis of CICIDS2017 dataset for designing intrusion detection systems[J]. International Journal of Engineering & Technology, 2018, 7(3): 479-482. |
| 10 | Goryunov M N, Matskevich A G, Rybolovlev D A. Synthesis of a machine learning model for detecting computer attacks based on the Cicids2017 dataset[J]. Proceedings of the Institute for System Programming of the RAS, 2020, 32(5): 81-94. |
| 11 | Stiawan D, Idris M Y B, Bamhdi A M, et al. CICIDS-2017 dataset feature analysis with information gain for anomaly detection[J]. IEEE Access, 2020, 8:132911-132921. |
| 12 | Salo F, Injadat M, Nassif A B, et al. Data mining techniques in intrusion detection systems: a systematic literature review[J]. IEEE Access, 2018, 6: 56046-56058. |
| 13 | Turnipseed I P. A new scada dataset for intrusion detection research[D]. Starkville:James Worth Bagley College of Engineering,Mississippi State University, 2015. |
| 14 | Rastogi A K, Narang N, Siddiqui Z A. Imbalanced big data classification: a distributed implementation of smote[C]∥Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking, Varanasi, India,2018: 1-6. |
| 15 | Myles A J, Feudale R N, Liu Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics: a Journal of the Chemometrics Society, 2004, 18(6): 275-285. |
| 16 | Biau G, Scornet E. A random forest guided tour[J]. Test, 2016, 25: 197-227. |
| 17 | Chen T, He T, Benesty M, et al. Xgboost: extreme gradient boosting(version 0.4-2)[DB/OL]. [2015-12-13]. . |
| 18 | 温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154-157. |
| Wen Bo-wen, Dong Wen-han, Xie Wu-jie, et al. Parameter optimization method for random forest based on improved grid search algorithm[J]. Computer Engineering and Applications,2018,54(10):154-157. | |
| 19 | Pattawaro A, Polprasert C. Anomaly-based network intrusion detection system through feature selection and hybrid machine learning technique[C]∥The 16th International Conference on ICT and Knowledge Engineering(ICT&KE), Bangkok, Thailand, 2018: 1-6. |
| 20 | 李红亚, 彭昱忠, 邓楚燕, 等. GA与PSO的混合研究综述[J]. 计算机工程与应用,2018, 54(2): 20-28. |
| Li Hong-ya, Peng Yu-zhong, Deng Chu-yan, et al. Review of hybrids of GA and PSO[J]. Computer Engineering and Applications, 2018, 54(2):20-28. | |
| 21 | Mohammed M, Mwambi H, Omolo B, et al. Using stacking ensemble for microarray-based cancer classification[C]∥International Conference on Computer, Control, Electrical, and Electronics Engineering, Khartoum, Sudan, 2018: 1-8. |
| 22 | 王辉, 李昌刚.Stacking集成学习方法在销售预测中的应用[J]. 计算机应用与软件, 2020, 37(8): 85-90. |
| Wang Hui, Li Chang-gang. Application of Stacking integrated learning method in sales forecasting[J]. Computer Applications and Software, 2020, 37(8):85-90. | |
| 23 | 张开放, 苏华友, 窦勇. 一种基于混淆矩阵的多分类任务准确率评估新方法[J].计算机工程与科学,2021, 43(11): 1910-1919. |
| Zhang Kai-fang, Su Hua-you, Dou Yong. A new multi-classification task accuracy evaluation method based on confusion matrix[J]. Computer Engineering & Science, 2021, 43(11): 1910-1919. | |
| 24 | Belarbi O, Khan A, Carnelli P, et al. An intrusion detection system based on deep belief networks[C]∥International Conference on Science of Cyber Security,Matsue, Japan, 2022: 377-392. |
| 25 | Yao Y, Su L, Lu Z. DeepGFL: deep feature learning via graph for attack detection on flow-based network traffic[C]∥IEEE Military Communications Conference(MILCOM),Los Angeles, USA, 2018: 579-584. |
| 26 | Roopak M, Tian G Y, Chambers J. Deep learning models for cyber security in IoT networks[C]∥IEEE The 9th Annual Computing and Communication Workshop and Conference, Las Vegas, USA,2019: 452-457. |
| [1] | 侯越,郭劲松,林伟,张迪,武月,张鑫. 分割可跨越车道分界线的多视角视频车速提取方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1692-1704. |
| [2] | 赵秀芝,谢德红. 基于噪声鲁棒性特征提取的普洱茶品种鲁棒判别方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1756-1762. |
| [3] | 赵宏伟,周明珠,刘萍萍,周求湛. 基于置信学习和协同训练的医学图像分割方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1675-1681. |
| [4] | 申自浩,高永生,王辉,刘沛骞,刘琨. 面向车联网隐私保护的深度确定性策略梯度缓存方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1638-1647. |
| [5] | 王友卫,刘奥,凤丽洲. 基于知识蒸馏和评论时间的文本情感分类新方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1664-1674. |
| [6] | 孟祥海,王国锐,张明扬,田毕江. 基于选择集成的山区高速事故预测模型[J]. 吉林大学学报(工学版), 2025, 55(4): 1298-1306. |
| [7] | 徐涛,孔帅迪,刘才华,李时. 异构机密计算综述[J]. 吉林大学学报(工学版), 2025, 55(3): 755-770. |
| [8] | 戴银飞,周秀贞,刘玉宝,刘志远. 基于CAN总线数据的车载网络入侵检测系统[J]. 吉林大学学报(工学版), 2025, 55(3): 857-865. |
| [9] | 赵孟雪,车翔玖,徐欢,刘全乐. 基于先验知识优化的医学图像候选区域生成方法[J]. 吉林大学学报(工学版), 2025, 55(2): 722-730. |
| [10] | 王娜,崔月磊,李杨,王子从. 基于小波包对数能量图的滚动轴承故障诊断方法[J]. 吉林大学学报(工学版), 2025, 55(2): 494-502. |
| [11] | 蔡晓东,周青松,张言言,雪韵. 基于动静态和关系特征全局捕获的社交推荐模型[J]. 吉林大学学报(工学版), 2025, 55(2): 700-708. |
| [12] | 车翔玖,武宇宁,刘全乐. 基于因果特征学习的有权同构图分类算法[J]. 吉林大学学报(工学版), 2025, 55(2): 681-686. |
| [13] | 董华松,连远锋. 海量数字媒体视频无损转码重压缩的轻量化检测算法[J]. 吉林大学学报(工学版), 2025, 55(2): 741-747. |
| [14] | 郭晓然,王铁君,闫悦. 基于局部注意力和本地远程监督的实体关系抽取方法[J]. 吉林大学学报(工学版), 2025, 55(1): 307-315. |
| [15] | 汪豪,赵彬,刘国华. 基于时间和运动增强的视频动作识别[J]. 吉林大学学报(工学版), 2025, 55(1): 339-346. |
|