吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1436-1442.doi: 10.13229/j.cnki.jdxbgxb.20241379
Chang-jun ZHA(
),Kai-xing TAO,Yue LIU,Mao-yu ZHAO(
),Hai-yan DONG
摘要:
传统的单像素压缩成像系统在获取测量值时,要求目标与成像系统保持相对静止状态;否则,重构出的图像存在模糊或完全失真。针对这一问题,本文提出了一种基于推扫式的动态互补压缩成像方法。该方法利用单列数字微镜器件来调制前景图像,采用2个独立的单像素传感器分别获取数字微镜装置反射的两路光信号,按列获取前景目标图像的压缩测量值,并给出动态压缩成像的恢复模型;然后,基于该模型,采用传统的算法重构出目标图像。与传统的重构结果不同的是,每条光路能够同时重构出2个目标图像。为提高重构图像质量,本文给出了一种基于多通道图像融合的质量增强方法。实验仿真与结果分析表明:本文提出的动态互补压缩成像系统不仅能有效地重构出前景图像,而且系统移动速度在一定范围内变化时,并不影响输出的图像质量,具有良好的鲁棒性。
中图分类号:
| 1 | Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. |
| 2 | Haupt J, Nowak R. Compressive Sampling for Signal Detection[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, USA, 2007: 1509-1512. |
| 3 | Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30. |
| 4 | Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. |
| 5 | Wang L, Li W, Huang Z, et al. A Nautilus bionic multi-information fusion compressed-sensing acoustic imaging device[J]. Cell Reports Physical Science, 2023, 4(12): 1-21. |
| 6 | Shimobaba T, Endo Y, Nishitsuji T, et al. Computational ghost imaging using deep learning[J]. Optics Communications, 2018, 413: 147-151. |
| 7 | Liu S, Hu X, Lin W Z, et al. Terahertz compressed sensing imaging based on line array detection[J]. Optics and Lasers in Engineering, 2023,168:No.107685. |
| 8 | Zhao Z, Yu Z, Qi H, et al. Redundant compressed single-pixel hyperspectral imaging system[J]. Optics Communications, 2023, 546: No.129797. |
| 9 | Zhu X T, Li Y, Zhang Z B, et al. Adaptive real-time single-pixel imaging[J]. Optics Letters, 2024, 49(4): 1065-1068. |
| 10 | Phillips D B, Sun M J, Taylor J M, et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 2017, 3(4):No.1601782. |
| 11 | Kravets V, Stern A. Video compressive sensing using russian dolls ordering of hadamard basis for multi-scale sampling of a scene in motion using a single pixel camera[J]. Computational Imaging III:International Society for Optics and Photonics, 2018:No.2304594. |
| 12 | Tong Q, JiangY, Wang H, et al. Image reconstruction of dynamic infrared single-pixel imaging system[J]. Optics Communications, 2018, 410: 35-39. |
| 13 | Jiao S M. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 2019, 27(9): 12841-12854. |
| 14 | 刘金华, 吴佳韵, 饶云波, 等.融合小波框架和低秩的动态磁共振图像重建新思路[J]. 电子测量与仪器学, 2024, 38(7): 55-63. |
| Liu Jin-hua, Wu Jia-yun, Rao Yun-bo, et al. New method for dynamic magnetic resonance image reconstruction combining wavelet frame and low-rank[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(7): 55-63. | |
| 15 | 杨春玲, 梁梓文. 静态与动态域先验增强的两阶段视频压缩感知重构网络[J]. 电子与信息学报, 2024, 46(11): 4247-4258. |
| Yang Chun-ling, Liang Zi-wen. Static and dynamic-domain prior enhancement two-stage video compressed sensing reconstruction network[J]. Journal of Electronics and Information Technology, 2024, 46(11): 4247-4258. | |
| 16 | Quach K G, Duong C N, Luu K, et al. Non-convex online robust PCA: Enhance sparsity via ℓp-norm minimization[J]. Computer Vision and Image Understanding, 2017, 158:126-140. |
| 17 | 陈平平, 陈家辉, 王宣达, 等. Dice系数前向预测的快速正交正则回溯匹配追踪算法[J]. 电子与信息学报, 2024, 46(4): 1488-1498. |
| Chen Ping-ping, Chen Jia-hui, Wang Xuan-da, et al. Regular backtracking fast orthogonal matching pursuit algorithm based on dice coefficient forward prediction[J]. Journal of Electronics and Information Technology, 2024, 46(4): 1488-1498. | |
| 18 | Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316. |
| 19 | Li Y H, Wang X D, Wang Z, et al. Modeling and image motion analysis of parallel complementary compressive sensing imaging system[J]. Optics Communications, 2018,423:100-110. |
| 20 | Yu W, Liu X, Yao X, et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 2015, 4(1):1-6. |
| 21 | 王玺, 梁文凯, 杨虹, 等. 权重化QR分解的正交匹配追踪算法硬件实现[J]. 电子学报, 2024, 52(5):1534-1542. |
| Wang Xi, Liang Wen-kai, Yang Hong, et al. Hardware implementation of orthogonal matching pursuit algorithm for weighted QR decomposition[J]. Acta Electronica Sinica, 2024, 52(5): 1534-1542. | |
| 22 | Shuo Z. The LabView implement of synchronization overlapping average algorithm to suppress noise[J]. Journal of North China Electric Power University, 2009, 36(4): 73-76. |
| [1] | 周求湛,冀泽宇,王聪,荣静. 基于在线压缩重构的非侵入式电力负荷监测[J]. 吉林大学学报(工学版), 2024, 54(6): 1796-1806. |
| [2] | 窦慧晶,谢东旭,郭威,邢路阳. 基于改进的正交匹配跟踪算法的波达方向估计[J]. 吉林大学学报(工学版), 2024, 54(12): 3568-3576. |
| [3] | 田金鹏,侯保军. 基于深度展开自注意力网络的压缩感知图像重构[J]. 吉林大学学报(工学版), 2024, 54(10): 3018-3026. |
| [4] | 曾春艳,严康,王志锋,王正辉. 多尺度生成对抗网络下图像压缩感知重建算法[J]. 吉林大学学报(工学版), 2023, 53(10): 2923-2931. |
| [5] | 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构[J]. 吉林大学学报(工学版), 2021, 51(6): 2246-2252. |
| [6] | 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245. |
| [7] | 金心宇,谢慕寒,孙斌. 基于半张量积压缩感知的粮情信息采集[J]. 吉林大学学报(工学版), 2021, 51(1): 379-385. |
| [8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
| [9] | 刘洲洲, 王福豹. 改进的离散混合蛙跳算法压缩感知信号重构及应用[J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268. |
| [10] | 王新华, 欧阳继红, 庞武斌. 压缩编码孔径红外成像超分辨重建[J]. 吉林大学学报(工学版), 2016, 46(4): 1239-1245. |
| [11] | 于华楠, 代芳琳, 苏天恺. 基于压缩感知的三相电能质量扰动信号压缩及分类新方法[J]. 吉林大学学报(工学版), 2016, 46(3): 964-971. |
| [12] | 张轶, 达新宇, 褚振勇. 低密度奇偶校验码的压缩感知重构[J]. 吉林大学学报(工学版), 2015, 45(3): 985-990. |
| [13] | 王宏志,王贤龙,周婷婷. 基于光滑0范数的图像分块压缩感知恢复算法[J]. 吉林大学学报(工学版), 2015, 45(1): 322-327. |
| [14] | 田文飚, 芮国胜, 张海波, 王林. 下非均匀信息采集及重构[J]. 吉林大学学报(工学版), 2014, 44(4): 1209-1214. |
| [15] | 贺岩, 赵晓晖. 理论的宽带多用户认知系统合作检测[J]. 吉林大学学报(工学版), 2014, 44(4): 1165-1170. |
|