万鹏1,孙瑜2,孙永海1
Wan Peng1,Sun Yu2,Sun Yong-hai1
摘要: 提出了利用计算机视觉系统代替人眼识别整粒大米和碎大米粒形的方法。设计了一套基于计算机视觉技术的大米粒形识别装置,采用灰度变换、阈值分割、平滑处理等图像处理方法获取大米的粒形图像,然后根据大米的粒形特点提取了米粒的面积、周长、长、宽等16个特征参数,采用主成分分析方法对提取的特征参数进行处理,以前三个主成分综合所有粒形特征参数,作为BP神经网络的输入特征值对网络进行训练和大米粒形识别。试验结果表明:该方法对整粒米识别的准确率为98.67%;对碎米识别的准确率为92.09%。
中图分类号:
| [1] | 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620. |
| [2] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
| [3] | 张曼, 施树明. 典型汽车运行工况的状态转移特征分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1008-1015. |
| [4] | 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
| [5] | 刘东亮, 王秋爽. 基于NGSIM数据的车辆瞬时速度获取方法[J]. 吉林大学学报(工学版), 2018, 48(1): 330-335. |
| [6] | 王德军, 吕志超, 王启明, 张贤达, 王子健. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报(工学版), 2017, 47(3): 917-923. |
| [7] | 许岩岩, 陈辉, 刘家驹, 袁金钊. CELL处理器并行实现立体匹配算法[J]. 吉林大学学报(工学版), 2017, 47(3): 952-958. |
| [8] | 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002. |
| [9] | 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844. |
| [10] | 苏畅, 付黎明, 魏君, 李硕, 黄蕾, 曹越. 基于感性工学和主成分分析的车身色彩设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1414-1419. |
| [11] | 马爽, 周长久, 张连东, 洪伟, 田彦涛. 基于Kinect改进的增量PCA扭锁在线识别[J]. 吉林大学学报(工学版), 2016, 46(3): 890-896. |
| [12] | 李寿涛, 田微, 郭鹏程, 马用学, 张浩, 王楠. 基于模糊自适应的BP神经网络动态行驶车辆车长测算[J]. 吉林大学学报(工学版), 2015, 45(6): 1881-1886. |
| [13] | 高明亮, 于生宝, 郑建波, 徐畅, 张堃, 栾卉. PSBP在高密度电阻率法二维反演中的应用[J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033. |
| [14] | 齐兴达, 李显君, 刘丝雨, 孟东晖. 基于数据包络分析和主成分分析的产业技术创新能力差异化研究[J]. 吉林大学学报(工学版), 2015, 45(3): 1017-1023. |
| [15] | 闫楚良, 郝云霄, 刘克格. 基于遗传算法优化的BP神经网络的材料疲劳寿命预测[J]. 吉林大学学报(工学版), 2014, 44(6): 1710-1715. |
|
||