Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2263-2271.doi: 10.13229/j.cnki.jdxbgxb.20201097

Previous Articles    

Effect of friction stir processing parameters on the surface modification layer of magnesium alloy

Xian-yong ZHU1,2(),Liang-wen XIE1,Yue-xiang FAN1,Cheng JIANG1,Wei-jia SUN1,Peng WANG1,Xiong XIAO1   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.Chongqing Research Institute,Jilin University,Chongqing 401120,China
  • Received:2020-09-11 Online:2023-08-01 Published:2023-08-21

Abstract:

In order to improve the microstructure and mechanical properties on surface of magnesium alloys, the surface modification of Mg-3.4Al-0.8Zn-0.4Sn magnesium alloy was carried out by friction stir processing. By using a pin-less tool, setting a series of travel speeds and rotation speeds, analyzing the thermal cycle process, observing the macroscopic morphology of the surface modification zone, characterizing microstructure and measuring microhardness, the influence of process parameters on the surface modification layer was studied. The results show that, the surface modification zone can be divided into four layers including stir layer, rotation flow layer, transition layer and themo-mechanical affected layer. As the travel speed increases, the time and the peak temperature of the thermal cycle, the thickness of the surface modification layer and the average grain size decrease, while the microhardness increases. By contrast, as the rotation speed increases, the peak temperature of the thermal cycle, the thickness of the surface modification layer and the average grain size increase, while the microhardness decreases. The modification layer obtained at each parameter showed significant grain refinement and microhardness increment compared to the base material.

Key words: materials synthesis and processing technology, magnesium alloy, friction stir processing, surface modification

CLC Number: 

  • TG178

Fig.1

Friction stir processing equipment and tool"

Fig.2

Schematic diagram of temperature measuring device"

Fig.3

Thermal cycle curves under different friction stir processing parameters"

Fig.4

Morphology of the modified surface under different process parameters"

Fig.5

Macrostructure of the modification surface at cross-section under different process parameters"

Fig.6

Fitting curve of surface modified layer thickness as a function of the process parameters"

Fig.7

Schematic diagram of the structure division and optical mirror images of various zones of the surface modification layer under process parameters of 20 mm/min and 1500 r/min"

Fig.8

Grain size distribution of various layers under the process parameters of 20 mm/min and 1500 r/min"

Fig.9

Microstructure of the transition zone of the surface modification layer under different process parameters"

Fig.10

Variation curves of average grain size of various layers with process parameters"

Fig.11

Variation curves of microhardness of various layers with process parameters"

1 马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
Ma Zong-yi, Shang Qiao, Ni Ding-rui, et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54(11): 1597-1617.
2 郭兴伍, 郭嘉成, 章志铖, 等. 镁合金材料表面处理技术研究新动态[J]. 表面技术, 2017, 46(3): 53-65.
Guo Xing-wu, Guo Jia-cheng, Zhang Zhi-cheng, et al. New development trend of surface treatment technology for magnesium alloys[J]. Surface Technology, 2017, 46(3): 53-65.
3 Jiang H Y, Ding W B, Zeng X Q, et al. Mechanical behavior of gas tungsten arc surface modified composite layer on mg alloy AZ31 with SiCp and aluminum[J]. Materials Science Forum, 2007, 546-549: 485-490.
4 Tsujikawa M, Adachi S, Abe Y, et al. Corrosion protection of Mg-Li alloy by plasma thermal spraying of aluminum[J]. Plasma Processes and Polymers, 2007, 4(Sup.1): 593-596.
5 Yang Y, Wu H. Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders[J]. Materials Letters, 2009, 63(1): 19-21.
6 Zhang C L, Zhang F, Song L, et al. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy[J]. Journal of Alloys and Compounds, 2017, 728: 815-826.
7 宋雨来, 刘庆, 王海洋. 挤压镁合金腐蚀与防护研究进展[J]. 表面技术, 2020, 49(5): 112-119.
Song Yu-lai, Liu Qing, Wang Hai-yang. Progress in corrosion and protection of extruded magnesium alloys[J]. Surface Technology, 2020, 49(5): 112-119.
8 Mishra R S, Mahoney M W. Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J]. Materials Science Forum, 2001, 357-359: 507-514.
9 陈娟, 彭立明, 韩靖宇, 等. 基于摩擦加工技术的镁合金表面改性研究现状[J]. 表面技术, 2017, 46(3): 9-19.
Chen Juan, Peng Li-ming, Han Jing-yu, et al. Research status of surface modification of magnesium alloys by friction-based processing technology[J]. Surface Technology, 2017, 46(3): 9-19.
10 Commin L, Dumont M, Masse J E, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Materialia, 2009, 57(2): 326-334.
11 卢晓红, 乔金辉, 周宇, 等. 搅拌摩擦焊温度场研究进展[J]. 吉林大学学报:工学版, 2023,53(1):1-17.
Lu Xiao-hong, Qiao Jin-hui, Zhou Yu, et al. Research progress of temperature field in friction stir welding[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 1-17.
12 Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1/2): 1-78.
13 李于朋, 孙大千, 宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报:工学版, 2019, 49(3): 836-841.
Li Yu⁃peng, Sun Da⁃qian, Gong Wen⁃biao. Temperature fields in bobbin-tool friction stir welding for 6082-T6 aluminum alloy sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 836-841.
14 徐安莲. 镁合金搅拌摩擦焊接头的显微组织及力学性能[D]. 重庆: 重庆大学材料科学与工程学院, 2016.
Xu An-lian. Microstructure and mechanical properties of magnesium alloys after friction stir welding[D]. Chongqing: College of Materials Science and Engineering, Chongqing University, 2016.
15 Song W W, Xu X, Zuo D, et al. Study on the corrosion of copper alloy by friction stir surface processing[J]. Anti-Corrosion Methods and Materials, 2016, 63(3): 190-195.
16 Song W W, Xu X, Zuo D, et al. Effect of processing parameters and temperature on sliding wear of H62 copper alloy modified by friction stir surface processing[J]. Materials Science, 2017, 23(3):222-226.
17 Hamilton C, Węglowski M S, Dymek S. A simulation of friction-stir processing for temperature and material flow[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1409-1418.
18 Węglowski M S, Pietras A, Dymek S, et al. Characterization of friction modified processing-a novel tool for enhancing surface properties in cast aluminium alloys[J]. Key Engineering Materials, 2012, 504-506: 1231-1236.
19 Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding[J]. Journal of Materials Processing & Manufacturing Science, 1998, 7(2): 163-172.
20 王大勇, 冯吉才. 搅拌摩擦焊焊缝表面弧形纹形成模型[J]. 焊接学报, 2003, 24(5): 42-44.
Wang Da-yong, Feng Ji-cai. Process model of arc corrugation on friction-stir weld[J]. Transactions of The China Welding Institution, 2003, 24(5): 42-44.
21 Ji S D, Meng X C, Ma L, et al. Effect of groove distribution in shoulder on formation, macrostructures, and mechanical properties of pinless friction stir welding of 6061-O aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 3051-3058.
22 Armstrong R, Codd I, Douthwaite R M, et al. The plastic deformation of polycrystalline aggregates[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2006, 7(73): 45-58.
23 Hall E O. The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society, 1951, 64(9): 747-753.
24 Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2021, 117:100752.
[1] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[2] Xiao-yan GU,Cheng-long SUI,Xing DI,Zheng-yu MENG,Kai-xuan ZHU,Chang-chun CHU. Effect of welding energy on performance of Cu/Ti joints obtained by ultrasonic welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1669-1676.
[3] Zi-wen WANG,Xue-dong GUO,Wei GUO,Meng-yuan CHANG,Wen-ting DAI. Viscoelasticity of hydrophobic nano⁃silica modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1709-1717.
[4] Wei-min ZHUANG,Hong-da SHI,Dong-xuan XIE,Guan-nan YANG. Thickness distribution of adhesive layer in dissimilar clinch⁃adhesive hybrid joint with steel and aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 100-106.
[5] Zhong-yi CAI,Fan-xiang MENG,Qing-min CHEN,Xuan ZHAO. Preform optimization for near-net-shape forming process of complex knuckle forging [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 84-90.
[6] Zhou SHI,Shu-qing KOU. Performance analysis and lightweight design of 36MnVS4 fracturesplitting connecting rod [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1992-2001.
[7] Qing-feng GUAN,Xin-wen YAO,Yang YANG,Ling-yan ZHANG,Di LIU,Chen LI,Peng LYU. Preparation and property of Cr alloying layer on TC4 after surface alloying induced by high current pulsed electron beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2002-2009.
[8] Xin LI,Yan-peng SUN,Dan WANG,Jun-xu CHEN,Zheng-wei GU,Hong XU. Finite element numerical simulation for automobile front floor forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1608-1614.
[9] Wen⁃quan LIU,Liang YING,Hai RONG,Ping HU. Forming limit prediction of high strength steel based on damage modified M⁃K model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1266-1271.
[10] Xin LI,Dan WANG,Jun⁃xu CHEN,Yan⁃peng SUN,Zheng⁃wei GU,Hong XU. Numerical simulation for handbrake fixed plate forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1258-1265.
[11] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[12] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[13] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[14] CHEN Jun-fu, GUAN Zhi-ping, YANG Chang-hai, NIU Xiao-ling, JIANG Zhen-tao, Song Yu-quan. Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests [J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[15] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!