Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3151-3159.doi: 10.13229/j.cnki.jdxbgxb.20220004

Previous Articles     Next Articles

Section optimization design of prestressed UHPC-NC composite beams

Jin-song ZHU1,2(),Ya-ting QIN1,Zhou-qiang LIU1   

  1. 1.School of Civil Engineering,Tianjin University,Tianjin 300072,China
    2.Key Laboratory of Coast Civil Structure Safety,Ministry of Education,Tianjin University,Tianjin 300072,China
  • Received:2022-01-04 Online:2023-11-01 Published:2023-12-06

Abstract:

A structural optimization design method based on improved adaptive genetic algorithm was proposed for the optimal design of prestressed ultrahigh performance concrete-ordinary concrete (UHPC-NC) composite beams.In order to minimize the cost of prestressed UHPC-NC composite beams, a mathematical model of prestressed UHPC-NC composite beams was established by taking the sectional parameters of the composite beams as the optimization variables and combining the constraints of bearing capacity and deformation.The optimization example shows that the improved adaptive genetic algorithm has better optimization ability and convergence performance.The optimal design parameters of prestressed UHPC-NC composite beams were searched by using adaptive genetic algorithm. The optimization results show that the optimized section parameters of prestressed UHPC-NC composite beams are reasonable and meet the requirements of constraint conditions.

Key words: bridge and tunnel engineering, ultra-high performance concrete composite beam, optimization design, genetic algorithm, prestressed concrete structure

CLC Number: 

  • TU318.1

Fig.1

Schematic diagram of prestressed UHPC-NC composite beam"

Fig.2

Schematic diagram of prestressed UHPC-NC composite beam"

Table 1

Value interval of design variables"

上下限bf1/mmhf1/mmb/mmbf2/mmhf2/mmhu/mmd/mmN
Min20001501204002001200168
Max300025030080050020003220

Table 2

Basic mechanical properties of UHPC and ordinary concrete"

材料轴心抗压强度/MPa峰值压应变/10-6轴心受拉强度/MPa峰值拉应变/10-6弹性模量/GPa
UHPC[7]145.1350010.010 00046.4
普通混凝土[7]40.416783.5112835.5

Table 3

Basic mechanical properties of steel bars"

材料弹性模量/GPa抗拉强度标准值/MPa抗拉强度设计值/MPa极限拉应变/10-6
HRB40020040033020 000
预应力钢绞线1951860126035 000

Fig.3

Optimization results of composite beams with different spans"

Table 4

Optimization results of prestressed UHPC-NC composite beams"

优化设计 变量跨径L=20 m跨径L=25 m跨径L=30 m跨径L=35 m跨径L=40 m
bf1/mm23002100210022002400
hf1/mm170170160200230
b/mm140120130130160
bf2/mm460450430470720
hf2/mm300220200230320
hu/mm12001400160019002000
d/mm2522252020
N1414141416
高跨比1/16.591/17.421/18.741/18.901/20.40
Mu/(kN·m)7747.898249.7510156.2311933.6916306.03
Vu/kN1467.921498.891754.111995.632578.29
材料成本/ 万元6.497.769.8713.2522.00

Fig.4

FE model of prestressed UHPC-NC composite beam"

Table 5

Checking results of prestressed UHPC-NC composite beams"

L/mMd/(kN·m)Mu/(kN·m)Vd/kNVu/kN竖向挠度/mm挠度限值/mm
204 063.087 747.89602.621 467.9217.4533.33
255 665.888 249.75689.541 498.8929.4641.67
307 610.8210 156.23790.781 754.1146.7350.00
3510 544.2511 933.69974.061 995.6357.1058.33
4015 140.3716 306.031 276.042 578.2966.6666.67

Table 6

"

L/m抗裂验算/MPa正截面压应力验算/MPa斜截面主压应力验算/MPa
正截面限值斜截面限值计算值限值计算值限值
20-18.727.02.297.0-34.33-72.55-34.36-87.06
25-14.003.50-32.20-32.29
30-9.226.26-45.42-45.45
35-4.001.54-29.07-29.52
40-1.211.21-32.82-33.50

Fig.5

Finite element analysis results of 30 m span prestressed UHPC-NC composite beams"

Fig.6

Variation trend of composite beam parameters"

1 Al-Osta M A, Isa M N, Baluch M H, et al. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials, 2017, 134: 279-296.
2 Valikhani A, Jahromi A J, Mantawy I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application[J]. Construction and Building Materials, 2020, 238: 117753.
3 Shirai K, Yin H, Teo W. Flexural capacity prediction of composite RC members strengthened with UHPC based on existing design models[J]. Structures, 2020, 23: 44-55.
4 Shafieifar M, Farzad M, Azizinamini A. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 156: 402-411.
5 张哲,邵旭东,李文光,等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58.
Zhang Zhe, Shao Xu-dong, Li Wen-guang, et al. Experimental study on axial tension performance of ultra-high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58.
6 Tayeh B A, Abu Bakar B H, Megat Johari M A, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay[J]. Construction and Building Materials, 2012, 36: 538-548.
7 李昭,赵华,朱平,等. UHPC-NC组合结构抗弯性能试验及有限元分析[J]. 公路工程, 2019,44(2): 194-200.
Li Zhao, Zhao Hua, Zhu Ping, et al. Test and finite element analysis of flexural performance of UHPC-NC composite structure[J]. Highway Engineering, 2019, 44(2): 194-200.
8 曾蔚,秦阳. 钢筋混凝土梁遗传算法优化设计[J]. 公路交通科技, 2006(8): 81-83.
Zeng Wei, Qin Yang. Optimization design of reinforced concrete beam based on genetic algorithm[J]. Journal of Highway and Traffic Science, 2006(8): 81-83.
9 Senouci A B, Al-Ansari M S. Cost optimization of composite beams using genetic algorithms[J]. Advances in Engineering Software, 2009, 40(11): 1112-1118.
10 Pedro R L, Demarche J, Miguel L F F, et al. An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges[J]. Advances in Engineering Software, 2017, 112: 31-45.
11 Sudira I G N, Hadi B K, Moelyadi M A, et al. Application of genetic algorithm for the design optimization of geodesic beam structure[J]. Applied Mechanics and Materials, 2016, 842: 266-272.
12 邬沛, 李玉顺, 许达, 等. 基于遗传算法的钢-竹组合工字形梁截面优化设计[J]. 建筑结构学报, 2020,41(1): 149-155.
Wu Pei, Li Yu-shun, Xu Da, et al. Optimization of section of steel-bamboo composite i-beam based on genetic algorithm[J]. Journal of Building Structures, 2020, 41(1): 149-155.
13 de Munck M, de Sutter S, Verbruggen S, et al. Multi-objective weight and cost optimization of hybrid composite-concrete beams[J]. Composite Structures, 2015, 134: 369-377.
14 Umeonyiagu I E, Nwobi-Okoye C C. Modelling and multi objective optimization of bamboo reinforced concrete beams using ANN and genetic algorithms[J]. European Journal of Wood and Wood Products, 2019, 77(5): 931-947.
15 黄冀卓,王湛. 基于遗传算法的抗震钢框架多目标优化设计[J]. 力学学报, 2007(3): 389-397.
Huang Ji-zhuo, Wang Zhan. Multi-objective optimization design of seismic steel frame based on genetic algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007(3): 389-397.
16 王佩艳,赵晨,耿小亮,等. 基于改进自适应遗传算法的层合板铺层顺序优化方法[J]. 科学技术与工程, 2018, 18(6): 336-340.
Wang Pei-yan, Zhao Chen, Geng Xiao-liang, et al. Optimization method of laminate layering sequence based on improved adaptive genetic algorithm[J]. Science Technology and Engineering, 2018, 18(6): 336-340.
17 Whitworth A H, Tsavdaridis K D. Embodied energy optimization of steel-concrete composite beams using a genetic algorithm[J]. Procedia Manufacturing, 2020, 44: 417-424.
18 万世成, 黄侨, 关健, 等. 预应力碳纤维板加固钢-混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报: 工学版, 2019, 49(4): 1114-1123.
Wan Shi-cheng, Huang Qiao, Guan Jian, et al. Negative moment zone test of prestressed carbon fiber plate reinforced steel-concrete composite continuous beam[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1114-1123.
19 孙琪凯, 张楠, 刘潇, 等. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报: 工学版, 2023, 53(2): 488-495.
Sun Qi-kai, Zhang Nan, Liu Xiao, et al. Dynamic reduction coefficient of steel-composite beams based on Timoshenko beam theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 488-495.
20 朱劲松, 秦亚婷, 史腾. 预应力UHPC-NC组合梁抗弯承载力计算方法[J]. 中南大学学报, 2022, 53(10): 3989-4000.
Zhu Jin-song, Qin Ya-ting, Shi Teng. Calculation method for flexural capacity of prestressed UHPC-NC composite beams[J]. Journal of Central South University(Science and Technology Edition), 2022, 53(10): 3989-4000.
21 刘大同. 中小跨径桥梁截面优化设计研究[D]. 武汉: 武汉理工大学交通学院, 2005.
Liu Da-tong. Study on section optimization design of medium and small span bridges[D]. Wuhan: College of Transportation, Wuhan University of Technology, 2005.
[1] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[2] Guo-hong TIAN,Peng-jie DAI. Active collision avoidance method of driverless vehicle based on partheno genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2404-2409.
[3] Ying-xin HUI,Jia-wei CHEN. Squeezed branch pile groups optimization method based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2089-2098.
[4] Jian-qing BU,Zhi-bo GUO,Ji-ren ZHANG,Jing-chuan XUN,Xiao-ming HUANG. Finite element analysis method for mechanical properties of steel⁃concrete composite beam bridges with multiple damages [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1621-1637.
[5] Ya-na MAO,Shi-zhong LIU,Jian XING,Hua YANG,Yu-bo JIAO. Bond⁃slip characterization between ultra⁃high performance glass sand concrete and high⁃strength reinforcement based on acoustic emission parameters [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1686-1694.
[6] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
[7] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[8] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[9] Zhi-qiang HAN,Gang XIE,Yong-jun ZHOU,Shi-zhong LIU,Min-jie JIN. Numerical analysis method of vehicle⁃bridge coupling vibration of curved bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 515-522.
[10] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[11] Guo-jun YANG,Qi-wei TIAN,Ming-hang LYU,Yong-feng DU,Guang-wu TANG,Zong-jian HAN,Yi-duo FU. Review of mechanic characteristics of tunnel⁃type anchorage of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1245-1263.
[12] Ying-chao ZHANG,Yun-hang LI,Zi-yu GUO,Guo-hua WANG,Zhe ZHANG,Chang SU. Optimization of the aerodynamic drag reduction of a cab behind engine vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 745-753.
[13] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[14] Li-jie ZHANG,Xi-ta A,Xiao TIAN,Wen LI. Multi⁃objective optimization design of accelerated degradation test based on Gamma process [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 361-367.
[15] Zhi-yuan YUANZHOU,Bo-hai JI,Jun-yuan XIA,Tong SUN. Pneumatic impact test on rib⁃to⁃diaphragm fatigue crack of steel box girder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2883-2891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[9] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .