Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3045-3055.doi: 10.13229/j.cnki.jdxbgxb.20211131

    Next Articles

Three-dimensional vortex characteristic analysis and simulation evaluation of peach cavity hydrodynamic coupling under braking condition

Bo-sen CHAI1,2,3(),Dong YAN1,Guang-yi WANG1,Wen-jie ZUO1,2   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    3.Sinotest Equipment Co. ,Ltd. ,Changchun 130103,China
  • Received:2021-10-27 Online:2023-11-01 Published:2023-12-06

Abstract:

Based on large eddy simulation, different sub-lattice turbulence models are used to simulate the flow field of a peach cavity hydrodynamic coupling under braking condition. The Q-criterion vortex recognition method is used to extract the three-dimensional multi-scale vortex structure inside the turbine. The unsteady multi-scale vortex spatiotemporal evolution law, energy transfer and loss mechanism inside the turbine is analysed based on the vortex dynamics theory. In order to verify and evaluate the accuracy and reliability of the simulation results, the velocity field and vorticity field are extracted based on flow field visualization experiment by particle image velocimetry. From the perspective of the qualitative identification of three-dimensional vortex structure spatiotemporal characteristics and the quantitative extraction of two-dimensional flow field parameters: WMLE S-Ω model simulation can provide rich information of three-dimensional multi-scale vortex of the near-wall region on the blade,the small-scale vortex can be captured accurately. WALE model simulation can accurately identify small-scale vortices in the corner area where the blade and the outer ring intersect. The simulation results of the two-dimensional flow field in the mainstream area by WMLES S-Ω model tend to be true, the secondary flow phenomenon in the corner area can be presented accurately. The numerical distribution of the two-dimensional flow field simulation in the near-wall region on the blade by WMLES model is consistent with experimental values. The research results can provide certain theoretical and technical guidance for the flow field simulation of hydrodynamic coupling.

Key words: mechanical engineering, hydrodynamic coupling, large eddy simulation, multi-scale vortex, particle image velocimetry

CLC Number: 

  • TH137.331

Fig.1

Calculation model of hydrodynamic coupling"

Fig.2

Mesh model of hydrodynamic coupling"

Table 1

Condition setting"

分析类型设置条件
计算方法SIMPLE算法
迭代求解时间步长/s0.01
迭代计算总步数300
收敛残差10-4

Fig.3

Three-dimensional vortex structure recognition and extraction"

Fig.4

Simulation results of different sub-lattice turbulence models"

Fig.5

Test measurement system"

Table 2

Test system composition"

所属系统设备名称所属公司
机械部分

YS7124型号

三相异步变频调速电机

天津林普机电

有限公司

2CY 型号齿轮泵负载装置

CLZ 型号联轴器

长春通用机械厂
光学部分FIBER-21激光片光系统

中西安远讯光电科技

有限公司

EMT260激光转速测量仪上海摩亿公司
图像采集FR340-10G高清CCD相机广州元奥仪器有限公司

Fig.6

Static image calibration"

Table 3

Static calibration result"

序号检测直径/px实际直径/mm标定系数/(mm·px-1
均值20.3320.098
120.9420.096
220.5620.097
318.8620.106
419.9620.098
521.0820.092
620.5620.097

Fig.7

Image calculation area selection"

Fig.8

PIV test results"

Table 4

Numerical value of sampling point of flow velocity in the middle section of turbine single flow channel"

序号流速/(m·s-1
SLWALEKETWMLESWMLESS-ΩPIV
13.73.83.43.43.72.7
24.23.43.73.83.43.1
31.92.92.42.03.13.2
41.32.11.31.61.63.5
51.61.40.81.21.42.4
61.51.30.40.60.93.2
71.11.21.00.20.72.5
80.31.61.11.91.92.0
92.73.13.92.63.64.7
105.33.55.25.45.25.1

Table 5

Numerical value of vorticity sampling point in the middle section of turbine single flow passage"

序号涡量/s-1
SLWALEKETWMLESWMLES S-ΩPIV
1170160200470140-100
2650500750900450380
3210420330550350350
4360320200150930230
5130160350220360-260
6850100230230370220
7450320250230370220
8200320500370850-340
9890740900930950580
10170320130100270-320

Fig.9

Velocity field structure distribution"

Fig.10

Single channel flow field structure"

Fig.11

Flow field data comparison"

1 初长祥, 马文星. 工程机械液压与液力传动系统(液力卷)[M]. 北京: 化学工业出版社, 2015.
2 魏巍, 闫清东. 液力元件设计[M]. 北京: 北京理工大学出版社, 2015.
3 郭昀朋. 液力耦合器电动给水泵变频改造技术应用研究[D]. 广州: 华南理工大学机械与汽车工程学院, 2018.
Guo Yun-peng. Research on frequency conversion technology of electric feed pump by hydraulic coupling[D]. Guangzhou: School of Mechanical and Automotive Engineering, South China University of Technology, 2018.
4 Hur N, Kwak M, Moshfeghi M, et al. Numerical flow analyses of a two-phase hydraulic coupling[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2307-2317.
5 Silva M J D, Lu Y, Sühnel T, et al. Autonomous planar conductivity array sensor for fast liquid distribution imaging in a fluid coupling[J]. Sensors and Actuators A: Physical, 2008, 147(2): 508-515.
6 Hampel U, Hoppe D, Diele K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2/3): 85-90.
7 Khatir T, Bouchetara M, Boutchicha D. Dynamics study of the operating behavior of hydrodynamic coupling by experimental and numerical simulation[J]. Mechanika, 2014, 20(4): 395-401.
8 卢秀泉, 马霖, 马文星, 等. 导轮关键参数对液力变矩偶合器性能的影响[J]. 吉林大学学报: 工学版, 2019, 49(2): 444-450.
Lu Xiu-quan, Ma Lin, Ma Wen-xing, et al. Effects of key parameters of stator on the performance of hydrodynamic coupling torque converter[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 444-450.
9 魏巍, 李双双, 安媛媛,等. 液力缓速器低充液率工况扰流柱起效条件判定方法[J]. 北京理工大学学报, 2017, 37(7): 672-676.
Wei Wei, Li Shuang-shuang, An Yuan-yuan, et al. Determing method for spoilers operating condition at low oil charging ratio in hydrodynamic retarder[J]. Transactions of Beijing Institute of Technology, 2017, 37(7), 672-676.
10 李晋, 闫清东, 王玉岭, 等. 液力变矩器泵轮内流场非定常流动现象研究[J]. 机械工程学报, 2016, 52(14): 188-195.
Li Jin, Yan Qing-dong, Wang Yu-ling, et al. Research on unsteady flow field of the pump in hydraulic torque converter[J]. Journal of Mechanical Engineering, 2016, 52(14), 188-195.
11 张嘉华, 崔红伟, 常宗旭,等. 基于CFD技术的调速型液力偶合器两相流分析方法研究[J]. 液压与气动, 2020(6): 90-96.
Zhang Jia-hua, Cui Hong-wei, Chang Zong-xu, et al. Two-phase flow analysis method of variable speed hydraulic coupling based on CFD techonology[J]. Chinese Hydraulics & Pneumatics, 2020(6): 90-96.
12 柴博森, 项玥, 马文星, 等. 制动工况下液力偶合器流场湍流模型分析与验证[J]. 农业工程学报, 2016, 32(3): 34-40.
Chai Bo-sen, Xiang Yue, Ma Wen-xing, et al. Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 34-40.
13 Goyal R, Gandhi B K, Cervantes M J. PIV measurements in francis turbine—a review and application to transient operations[J]. Renewable & Sustainable Energy Reviews, 2018, 81(2): 2976-2991.
14 Atkinson C, Buchner A J, Eisfelder M, et al. Time-resolved PIV measurements of a self-similar adverse pressure gradient turbulent boundary layer[J]. Mechanical & Aerospace Engineering, 2016(6): 54014301.
15 González-Neria I, Alonzo-Garcia A, Martínez-Delgadillo S A, et al. PIV and dynamic LES of the turbulent stream and mixing induced by a V-grooved blade axial agitator[J]. Chemical Engineering Journal, 2019, 374: 1138-1152.
16 李勇. 基于深度学习的粒子图像测速算法研究及应用[D]. 武汉: 华中科技大学机械科学与工程学院. 2018.
Li Yong. Deep learning based particle image velocimetry technology and its application[D]. Wuhan: School of Machanical Science and Engineering, Huazhong University of Science and Technology, 2018.
17 柴博森, 项玥, 刘勇, 等. 基于PIV试验的水介质液力偶合器涡轮流场仿真评价[J]. 华南理工大学学报:自然科学版, 2018, 46(5): 125-134.
Chai Bo-sen, Xiang Yue, Liu Yong, et al. Evaluation of flow field simulation of turbine in water-medium hydrodynamic coupling based on PIV experiment[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(5): 125-134.
18 柴博森, 项玥, 马文星, 等. 制动工况下液力偶合器涡轮轴向漩涡流场试验分析[J]. 农业工程学报, 2017, 33(8): 69-75.
Chai Bo-sen, Xiang Yue, Ma Wen-xing, et al. Experimental analysis on axial vortex flow field of turbine in hydrodynamic coupler under braking condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 69-75.
19 卢秀泉,胡春玉,柴亚龙,等. 大功率液力偶合器调速工况瞬态流场特性[J]. 吉林大学学报:工学版, 2019, 49(5): 1539-1546.
Lu Xiu-quan, Hu Chun-yu, Chai Ya-long, et al. Analysis of transient flow field characteristics of large-scale hydrodynamic coupling under speed regulation[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1539-1546.
20 Nikiforova K V, Guseva E K, Garbaruk A V. Application of WMLES to wall-bounded flows with pressure gradient[J]. Journal of Physics: Conference Series, 2018, 1135(1): 12-98.
21 柴博森, 王玉建, 刘春宝, 等. 基于粒子图像测速技术的液力变矩器涡轮内流场测试与分析[J]. 农业工程学报, 2015, 31(12): 96-98.
Chai Bo-sen, Wang Yu-jian, Liu Chun-bao, et al. Test and analysis of internal flow field in turbine of hydrodynamic torque converter based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 96-98.
[1] Lin-rong SHI,Wu-yun ZHAO. Design and test of rolling spoon type flaxes precision hole sower for caraway in northwest cold and arid agricultural region [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2706-2717.
[2] Bo-sen CHAI,Guang-yi WANG,Dong YAN,Guo-ren ZHU,Jin ZHANG,Heng-sheng LYU. Numerical simulation of cavitation in torque converter and analysis of its influence on performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2236-2244.
[3] Guo-hui CHEN,Ye-yin XU,Ying-hou JIAO. Meshing stiffness calculation and vibration analysis of helical gear considering deflection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1902-1910.
[4] Sheng LI,Jia ZHU,De-hui HUANG,Cun-fu CHEN,Hong-qing FEI,Wei FENG,Xing-jun HU. Structural parameters optimization of louver fins of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 998-1006.
[5] Jian WANG,Wei YU,Bin WANG. Effects of methanol substitution percent on combustion and emission of diesel engines under plateau condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 954-963.
[6] Li-juan YU,Yang AN,Jia-long HE,Guo-fa LI,Sheng-xu WANG. Research progress and development trend of extrapolation method in electromechanical equipment load spectrum [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 941-953.
[7] Zhen SONG,Jie LIU. Time series prediction algorithm of vibration frequency of rotating machinery [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1764-1769.
[8] Ling ZHU,Qiu-cheng WANG. New energy vehicle drive system coordinated control method under spatial geometric constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1509-1514.
[9] Zhao-hui JIN,Le-qi GU,Wei HONG,Fang-xi XIE,Tian YOU. Analysis on pressure fluctuation of hydraulic variable valve actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 773-780.
[10] Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279.
[11] Lei WANG,Bing-han HUANG,Jia-hui CONG,Li HUI,Song ZHOU,Yong-zhen XU. Effect of ultrasonic impact on fatigue performance of friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2542-2548.
[12] Xing-jun HU,Jing-long ZHANG,Li XIN,Yu-fei LUO,Jing-yu WANG,Tian-ming YU. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1557-1564.
[13] Yong-ying TAN,Shan-zhen YI,Da-bing XUE,Xiao-ming WANG,Lei YUAN. Weight adaptive control for trotting gait of load-carrying quadruped walking vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1506-1517.
[14] Gang WANG,Hui-li LIU,Hong-lei JIA,Chun-jiang GUO,Yong-jian CONG,Ming-hao QU. Design and experiment of touching-positioning weeding device for inter-row maize (Zea Mays L.) [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1518-1527.
[15] Fu-gang ZHAI,Yan-bin YIN,Chao LI,Wei TIAN,Zi-shi QIAO. Stiffness modeling and feedforward control of servo electric cylinder drive system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 442-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .