Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (10): 2879-2885.doi: 10.13229/j.cnki.jdxbgxb.20220333

Previous Articles     Next Articles

Punching shear failure test and joint bearing capacity analysis of building slab column structure

Zhen-yong DI1(),Xin-hui YANG2,Xiao LIN3   

  1. 1.Audit Department,Southwest University,Chongqing 400715,China
    2.Foundation Research Institute,Chinese Academy of Building Sciences,Beijing 100027,China
    3.College of Engineering and Technology,Southwest University,Chongqing 400715,China
  • Received:2022-03-29 Online:2023-10-01 Published:2023-12-13

Abstract:

In order to ensure the safety of the building slab-column structure, the slab-column structure specimen plate was made with steel bars, cement, etc. as raw materials, and the punching failure test was carried out. According to the calculation formula of the joint bearing capacity, the joint bearing capacity under different plate thicknesses, concrete strength, longitudinal reinforcement ratio, and crush ratio was calculated, and the influence of each factor change on the joint bearing capacity was analyzed. The experimental results show that when the longitudinal load of the specimen plate increases to the maximum bearing capacity, instantaneous brittle failure occurs, and warpage occurs at all displacement measuring points. The smaller the value, the greater the punching shear bearing capacity; greatly increasing the thickness of the specimen plate, the reinforcement ratio of reinforcement, the concrete strength, and reducing the punching collapse ratio can improve the punching shear bearing capacity of the specimen plate. When the reinforcement ratio increases from 0.6% to 1.4%, the maximum punching shear bearing capacity of the node can be increased by 29.2%. When the punching ratio is 7 and the reinforcement ratio is 0.6%, the increase of the concrete strength is small, and the increase in the punching shear bearing capacity of the node is small. To a certain extent, the bearing capacity of the building slab-column structure is improved.

Key words: building slab column structure, punching failure, bearing capacity, washout ratio, longitudinal reinforcement ratio, concrete strength

CLC Number: 

  • TU375.2

Table 1

C30, C50 strength concrete preparation raw material composition"

混凝土强度水泥河沙卵石
C3010018532453
C5010019729433

Table 2

Main parameters of test piece"

试件混凝土强度冲垮比纵筋 配置纵筋率板厚/mm空心率/%
E5-30-1C30514@1200.610526.4
E5-30-2C30514@801.413035.5
E5-30-3C30514@800.613028.1
E5-30-4C30514@800.613023.2
E5-30-5C30514@800.613035.1
E5-30-6165514@800.616543.8
E5-50-1C50514@1200.610526.4
E5-50-2C50514@801.410526.4
E7-30-1C30714@1200.610526.4
E7-30-2C30714@801.410526.4
E7-50-1C50714@1200.610526.4
E7-50-2C50714@801.410526.4

Fig.1

Test device"

Fig.2

Design of displacement measuring points"

Fig.3

Load center deflection curve analysis"

Fig.4

Load deflection curve of each moving measuringpoint"

Table 3

Effect of plate thickness on shear capacity"

试件板厚/mm空心率/%实心冲切面面积/mm2冲切承载力/kN
E5-30-110526.4102.2185
E5-30-213035.5112.3195
E5-30-616543.8126.3205
E5-30-313028.1118.1205
E5-30-413023.2122.8225
E5-30-513035.1113.1201

Table 4

Effect of longitudinal reinforcement ratio onshear capacity"

试件混凝土强度冲垮比纵向配筋率/%抗冲切承载力/KN
E5-30-1C3050.6770
E5-30-2C3051.4925
E5-50-1C5050.6960
E5-50-2C5051.41240
E7-30-1C3070.6720
E7-30-2C3071.4900
E7-50-1C5070.6780
E7-50-2C5071.4970

Table 5

Analysis of relationship between bearing capacity of joint and punching strength of concrete slab"

试件混凝土强度/MPa冲垮比轴心抗压强度fc /MPa抗拉强度ft /MPa冲切承载力/kN
E5-30-1C30530.52.99770
E5-30-2C30537.23.31925
E5-50-1C50539.83.41960
E5-50-2C50542.33.531240
E7-30-1C30722.82.55720
E7-30-2C30725.72.73900
E7-50-1C50738.93.37780
E7-50-2C50735.63.34970

Table 6

Relationship analysis between collapse ratio andpunching shear capacity"

组别试件冲垮比模拟极限 位移/mm冲切承载 力/kN
一组E5-50-158.9956
E7-50-1711.2775
E5-30-159.2775
E7-30-1712.3716
二组E5-50-256.31232
E7-50-2710.8967
E5-30-257.3917
E7-30-2711.5897
1 王朋,于彬,史庆轩,等. 钢筋混凝土板柱节点冲切破坏模型及承载力分析[J]. 西安建筑科技大学学报:自然科学版,2020,52(6):852-859.
Wang Peng, Yu Bin, Shi Qing-xuan,et al. Punching failure models and bearing capacity analysis of reinforced concrete slab-column connections[J]. Journal of Xi'an University of Architecture & Technology (Science Edition),2020,52(6):852-859.
2 李伊晨,李易,周大兴,等. 设置托板和暗梁的板柱节点冲剪后受力性能的试验研究[J]. 地震工程与工程振动,2020,40(5):178-186.
Li Yi-chen, Li Yi, Zhou Da-xing,et al. Experimental study on post-punching mechanical performance of flat slab-column joints with drop panel and embedded beam[J]. Earthquake Engineering and Engineering Vibration,2020,40(5):178-186.
3 党隆基,庞瑞,梁书亭,等. 板柱节点极限承载力计算及国内外规范比较[J]. 建筑科学,2019,35(1):32-37, 134.
Dang Long-ji, Pang Rui, Liang Shu-ting,et al. Ultimate bearing capacity calculation of slab-column connections and comparative study on different codes at home and abroad[J]. Building Science, 2019, 35(1): 32-37, 134.
4 黄川腾,王志军,庞慧英,等. 现浇钢筋混凝土空心楼盖板柱节点抗冲切性能试验研究[J]. 建筑结构,2019,49(13):124-131.
Huang Chuan-teng, Wang Zhi-jun, Pang Hui-ying,et al. Experimental study on punching shear behavior of slab-column joint for cast-in-situ reinforced concrete hollow floor structure[J]. Building Structure, 2019, 49(13):124-131.
5 赵晋,易伟建. 无腹筋板柱节点抗冲切承载力计算研究[J]. 建筑结构, 2019,49(13):120-123, 131.
Zhao Jin, Yi Wei-jian. Calculation and study on punching bearing capacity of slab-column joints without shear reinforcement[J]. Building Structure, 2019, 49(13):120-123, 131.
6 史庆轩,蒋明月. 钢筋混凝土板柱节点受冲切承载力计算方法分析[J]. 建筑结构,2021,51(2):1-8, 45.
Shi Qing-xuan, Jiang Ming-yue.Analysis on calculation methods of punching shear capacity of reinforced concrete slab-column connections[J]. Building Structure, 2021, 51(2):1-8, 45.
7 王仲衡,罗斌,张旻权,等. 建筑索结构销轴耳板连接节点承载力试验研究和有限元分析[J]. 建筑结构学报,2020,41(11):150-159.
Wang Zhong-heng, Luo Bin, Zhang Min-quan,et al. Experimental study and finite element analysis on bearing capacity of pin-connected plate joints[J]. Journal of Building Structures, 2020, 41(11):150-159.
8 尚鋆,周理,黄勇. 型钢混凝土组合板柱节点冲切破坏机理研究[J]. 四川建筑科学研究, 2020, 46(2):32-42.
Shang Jun, Zhou Li, Huang Yong. Study on punching failure mechanism of steel reinforced concrete slab-column joints[J]. Sichuan Building Science,2020,46(2):32-42.
9 王贵,张大长,王龙飞. 反复荷载下圆钢管45°单插板节点承载力特性试验及理论分析[J]. 土木工程与管理学报,2019,36(1):169-174.
Wang Gui, Zhang Da-chang, Wang Long-fei. Experimental study and theoretical analysis on bearing capacity behavior of 45° steel tube-gusset plate connections subjected to cyclic load[J]. Journal of Civil Engineering and Management,2019,36(1):169-174.
10 庞瑞,朱筱俊,杨建,等. ECC/RC空心楼盖板柱节点抗冲切性能[J]. 建筑科学与工程学报,2019,36(1):93-100.
Pang Rui, Zhu Xiao-jun, Yang Jian,et al. Punching shear behavior of ECC/RC hollow floor slab-column connection[J]. Journal of Architecture and Civil Engineering,2019,36(1):93-100.
11 冯梓航,杨小平,郑月昱,等. 板柱式地铁车站中板承载性能研究[J]. 施工技术, 2019, 48(7):109-113.
Feng Zi-hang, Yang Xiao-ping, Zheng Yue-yu,et al. Research on bearing capacity of middle plates in slab-column metro stations[J]. Construction Technology, 2019, 48(7):109-113.
12 杨友喆,李易,周大兴,等. 板柱节点冲剪破坏后的精细有限元分析[J]. 工程力学, 2020, 37(6):206-215.
Yang You-zhe, Li Yi, Zhou Da-xing,et al. Fine finite element analysis of slab-column joints after punching shear[J]. Engineering Mechanics, 2020, 37(6): 206-215.
13 刘小燕,王光辉,陈偲鹏,等. 受撞钢筋混凝土梁抗弯承载力试验研究[J]. 应用基础与工程科学学报, 2019, 27(5):1033-1041.
Liu Xiao-yan, Wang Guang-hui, Chen Cai-peng, et al. Flexural bearing capacitytest study for impacted reinforced concrete beams[J]. Journal of Basic Science and Engineering, 2019, 27(5):1033-1041.
14 庞瑞,王璐,倪红梅,等. 混凝土空心楼盖板柱增强节点抗震性能试验研究[J]. 防灾减灾工程学报,2020,40(6):919-928.
Pang Rui, Wang Lu, Ni Hong-mei,et al. Experimental study on the seismic behavior of strengthened RC slab-column connections in flate plate structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6):919-928.
15 李沙沙,蒋玉飞,康英. 装配式建筑构件连接结构受力特性数值模拟[J]. 计算机仿真, 2021, 38(1):198-202.
Li Sha-sha, Jiang Yu-fei, Kang Ying. Numerical simulation of mechanical characteristics of prefabricated building component connection structure[J]. Computer Simulation, 2021, 38(1):198-202.
[1] Zi-yu LIU,Shi-tong CHEN,Mo-mo ZHI,Xiao-ming HUANG,Zhe-xin CHEN. Ultimate bearing capacity of temporary⁃permanent conversion rushrepair steel pier for emergency use [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1601-1611.
[2] Yan-qing ZHANG,Yu-xuan LYU,Shi HAN,Long-fei YOU,Jun ZENG,Fei-yang HOU. Experimental research on flexural performance of tubular roof prefabricated structural components [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1390-1399.
[3] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[4] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[5] Guo-jun YANG,Qi-wei TIAN,Ming-hang LYU,Yong-feng DU,Guang-wu TANG,Zong-jian HAN,Yi-duo FU. Review of mechanic characteristics of tunnel⁃type anchorage of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1245-1263.
[6] Yi-hong WANG,Qiao-luo TIAN,Guan-qi LAN,Sheng-fa YAO,Jian-xiong ZHANG,Xi LIU. Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2626-2635.
[7] Bo XU,Chuan-xi LI. Detection method of bearing capacity of long-span concrete-filled steel tubular arch bridge based on grey theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2360-2366.
[8] Jing ZHOU,Ya-jun LI,Wei-feng ZHAO,Zong-jian LUO,Guo-bin BU. Eccentric compression behavior of bamboo⁃plywood and steel⁃tube dual⁃confined dust⁃powder concrete columns [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2096-2107.
[9] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[10] Bi⁃xiong LI,Qiao LIAO,Yi⁃ping ZHANG,Lian ZHOU,Ping WEI,Kan LIU. Theoretical on flexural behavior of ultra high strength rebar reinforced engineered cementitious composites beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1153-1161.
[11] LIU Zhi-feng, ZHAO Dai-hong, WANG Yu-mo, HUN Lian-ming, ZHAO Yong-sheng, DONG Xiang-min. Relationship between bearing capacity of heavy machine hydrostatic rotary table and temperature field distribution of oil pad [J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] LIU Zhi-feng, HUN Lian-ming, YIN Ya-wen, WANG Jian-hua, LUO Zong-lan, DONG Xiang-min. Modeling of bearing capacity of fixed hydrostatic turntable considering centrifugal force [J]. 吉林大学学报(工学版), 2017, 47(6): 1791-1795.
[13] GUO Nan, ZHANG Ping-yang, ZUO Yu, ZUO Hong-liang. Bending performance of glue-lumber beam reinforced by bamboo plyboard [J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[14] YANG Xin-hui, XUE Wei, GUO Nan. Bending performance of glued-lumber beam reinforced with steel plate [J]. 吉林大学学报(工学版), 2017, 47(2): 468-477.
[15] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!