Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3699-3710.doi: 10.13229/j.cnki.jdxbgxb.20230176

Previous Articles     Next Articles

Trajectory tracking control method of biplane air vehicle considering modelenvironment uncertainty

Sheng-jie HOU1(),Zhong-lai WANG2(),Peng-peng ZHI3,Hao ZHENG2,Jing XU2   

  1. 1.National Innovation Institute of Defense Technology,Academy of Military Sciences,Beijing 100071,China
    2.School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
    3.Yangtze Delta Region Institute (Huzhou),University of Electronic Science and Technology of China,Huzhou 313001,China
  • Received:2023-02-28 Online:2024-12-01 Published:2025-01-24
  • Contact: Zhong-lai WANG E-mail:houshengjiework@sina.com;wzhonglai@uestc.edu.cn

Abstract:

A trajectory tracking control method based on adaptive model predictive control (MPC) was proposed to address the influence of model parameter uncertainty and gust disturbance on the flight trajectory of biplane flapping-wing micro air vehicles (BFMAV) during its task process. Firstly, a six degree of freedom nonlinear dynamic model was built according to the structural characteristics of a BFMAV. Secondly, the internal and external disturbance were introduced to characteristic the model parameter uncertainty and gust disturbance, the state equation of the BFMAV was further determined, and the attitude guidance law was designed to adjust the attitude angle in real-time. Thirdly, a BFMAV trajectory prediction model considering model-environment uncertainty was built by embedding the internal and external disturbance into the MPC model. Finally, different control methods were used to simulate the trajectory tracking states in the free flight and with internal and external disturbances to verify the effectiveness of the proposed method. The results show that the proposed method has stable tracking performance and small tracking error compared with the traditional MPC method. In the case of model uncertainty and external disturbance, the trajectory tracking task of the BFMAV can be completed well.

Key words: biplane flapping-wing micro air vehicle, trajectory tracking, MPC model, adaptive control

CLC Number: 

  • V249.12

Fig.1

Schematic diagram of BFMAV body coordinate system and track coordinate system"

Fig.2

Schematic diagram of BFMAV wing coordinate system"

Fig.3

Schematic diagram of BFMAV steering force"

Fig.4

Schematic diagram of BFMAV expected yaw angle"

Fig.5

Schematic diagram of BFMAV expected pitch angle"

Fig.6

MPC schematic diagram"

Fig.7

BFMAV's adaptive MPC trajectory tracking control system architecture"

Table 1

BFMAV physical parameters"

参数符号描述数值
m总质量/g15.40
Ixx轴转动惯量/(kg·m-24.9×10-6
Iyy轴转动惯量/(kg·m-24.3×10-6
Izz轴转动惯量/(kg·m-21.2×10-6
Ixz相对xz轴惯性积/(kg·m-25.6×10-7

Fig.8

BFMAV circumferential turning 3D track tracking"

Fig.9

BFMAV trajectory tracking simulation curve"

Fig.10

BFMAV track tracking error curve"

Fig.11

BFMAV trajectory tracking curve considering time-varying disturbance"

Fig.12

BFMAV trajectory tracking error curve considering time-varying disturbance"

Table 2

Comparative analysis of root mean square error of trajectory tracking"

方法

x轴均方根

误差

y轴均方根

误差

z轴均方根

误差

本文0.041 60.074 80.020 2
MPC0.168 70.143 30.079 6
1 Avionics M D. A flapping of wings[J]. Science, 2012, 335(6075): 1430-1433.
2 郑皓, 余立均, 智鹏鹏, 等. 仿生扑翼微型飞行器动态避障策略[J]. 吉林大学学报:工学版, 2023, 53(9): 2732-2740.
Zheng Hao, Yu Li-jun, Zhi Peng-peng, et al. Dynamic obstacle avoidance strategy for flapping⁃wing micro air vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2732-2740.
3 李丹. 仿生扑翼飞行器:空气动力、扑动与智能控制的完美结合[J]. 航空制造技术, 2018, 61(8): 22-24.
Li Dan. Flapping flight vehicle: ideal combination of aerodynamic, flapping and intelligent control[J]. Aeronautical Manufacturing Technology, 2018, 61(8): 22-24.
4 James E B, Chang K K, Yuri S. Control of a flapping-wing micro air vehicle: sliding-mode approach[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1223-1226.
5 肖天航, 罗东明, 郑祥明, 等. 仿生飞行器非定常气动优化设计研究进展与挑战[J]. 空气动力学学报, 2018, 36(1): 80-87.
Xiao Tian-hang, Luo Dong-ming, Zheng Xiang-ming, et al. Research progress and challenges of unsteady aerodynamic optimization design of bionic aircraft[J]. Journal of Aerodynamics, 2018, 36(1): 80-87.
6 范继祥, 周狄. 基于剪式陀螺系统的空间飞行器非线性姿态控制[J]. 机械工程学报, 2010, 46(8): 151-158.
Fan Ji-xiang, Zhou Di. Nonlinear attitude control of spacecraft based on scissor pairs of control moment gyroscope[J]. Chinese Journal of Mechanical Engineering, 2010, 46(8): 151-158.
7 李光明. 大翼展仿生飞鸟机器人机构设计与远程操作控制方法[D]. 哈尔滨: 哈尔滨工业大学机电工程与自动化学院, 2017.
Li Guang-ming. Mechanism design and remote operation control method of bionic bird robot with large wing[D]. Harbin:College of Mechanical and Electrical Engineering and Automation, Harbin Institute of Technology, 2017.
8 吴涵. 扑翼飞行器半自主导航系统的设计与实现[D]. 北京: 北京交通大学机械与电子控制工程学院, 2019.
Wu Han. Design and implementation of semi-autonomous navigation system for flapping wing aircraft[D]. Beijing: School of Mechanical,Electronic and Control Engineering, Beijing Jiaotong University, 2019.
9 刘晶, 汪超, 谢鹏, 等. 基于PD控制的仿昆虫扑翼样机研制[J]. 航空学报, 2020, 41(9):106-117.
Liu Jing, Wang Chao, Xie Peng, et al. Development of insect-like flapping wing micro air vehicle based on PD control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 106-117.
10 张西金, 方宗德, 杨小辉, 等. 微扑翼飞行器驱动装置设计与翅翼轨迹控制仿真研究[J]. 系统仿真学报, 2011, 23(4): 735-739.
Zhang Xi-jin, Fang Zong-de, Yang Xiao-hui, et al. Driving equipment design and wing motion track control simulation for micro flapping flight[J]. Journal of System Simulation, 2011, 23(4): 735-739.
11 Banazadeh A, Taymourtash N. Adaptive attitude and position control of an insect-like flapping wing air vehicle[J]. Nonlinear Dynamics, 2016, 85(1): 47-66.
12 李航, 何广平, 毕富国. 一类微型扑翼飞行器的滑模自适应姿态控制[J]. 空间控制技术与应用, 2018, 44(5): 81-88.
Li Hang, He Guang-ping, Bi Fu-guo. Sliding-mode adaptive attitude controller design for flapping-wing micro air vehicle[J]. Aerospace Control and Application, 2018, 44(5): 81-88.
13 王丙元, 张帅华, 郑芳, 等. 基于自适应终端滑模的扑翼飞行器姿态控制[J]. 控制工程, 2020, 27(2): 309-315.
Wang Bing-yuan, Zhang Shuai-hua, Zheng Fang, et al. Attitude control of flapping-wing aircraft based on adaptive terminal sliding mode[J]. Control Engineering of China, 2020, 27(2): 309-315.
14 Bluman J E, Kang C K, Shtessel Y B. Sliding mode control of a biomimetic flapping wing micro air vehicle in hover[C]∥AIAA Atmospheric Flight Mechanics Conference,Denver, USA, 2017: 1633.
15 Zheng H, Zhang Y, Husnain H M, et al. Swarm intelligence based model predictive control strategy for optimal state control of discrete time-varying MIMO linear systems [J]. International Journal of Control, Automation, and Systems, 2022, 20(10): 3433-3444.
16 Berberich J, Köhler J, Muller M A. Data-driven model predictive control with stability and robustness guarantees[J]. IEEE Transactions on Automatic Control, 2021 66(4): 1702-1717.
17 Karg B, Lucia S. Efficient representation and approximation of model predictive control laws via deep learning[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3866-3878.
18 Zhang L, Xie J, Koch C R. Model predictive control of jacket tubular reactors with a reversible exothermic reaction[J]. Industrial and Engineering Chemistry Research, 2020, 59(42): 18921-18936.
19 Zhang Y, Zheng H, Xu J, et al. Radial basis function model-based adaptive model predictive control for trajectory tracking of a clapping-wing micro air vehicle[J]. Aerospace, 2023, 10(3): No.253.
20 鲜斌, 李杰奇, 古训. 基于非线性扰动观测器的无人机地面效应补偿[J]. 吉林大学学报:工学版, 2022, 52(8): 1926-1933.
Xian Bin, Li Jie-qi, Gu Xun. Ground effects compensation for an unmanned aerial vehicle via nonlinear disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1926-1933.
[1] Yan-tao TIAN,Wen-yan YU,Yan-shi JI,bo XIE. Shared controller design for different driving behavior models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2676-2686.
[2] Sheng CHANG,Hong-fei LIU,Nai-wei ZOU. H loop shaping robust control of vehicle tracking on variable curvature curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2141-2148.
[3] Bin XIAN,Yin-xin WANG,Ling WANG. Distributed robust tracking control for multiple unmanned aerial vehicles: theory and experimental verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2093-2103.
[4] Xian-yi XIE,Yu-han WANG,Li-sheng JIN,Xin ZHAO,Bai-cang GUO,Ya-ping LIAO,Bin ZHOU,Ke-qiang LI. Intelligent vehicle trajectory tracking control based on adjusting step size of control horizon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 620-630.
[5] Yan-an ZHANG,Yue-feng DU,Qing-feng MENG,Xiao-yu LI,Lei LIU,Zhong-xiang ZHU. Adaptive control of wet clutch pressure based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 852-864.
[6] Guo LIU,Jian XIONG,Xiu-jian YANG,Yang-fan HE. Intelligent vehicle trajectory tracking control based on curvature augmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3717-3728.
[7] Liu ZHANG,Qing-ming ZENG,Huan-yu ZHAO,Guo-wei FAN. Distributed adaptive vibration suppression control method of large solar panels for satellites based on Lyapunov theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2676-2685.
[8] De-jun WANG,Kai-ran ZHANG,Peng XU,Tian-biao GU,Wen-ya YU. Speed planning and control under complex road conditions based on vehicle executive capability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 643-652.
[9] Bo XIE,Rong GAO,Fu-qiang XU,Yan-tao TIAN. Stability control of human⁃vehicle shared steering system under low adhesion road conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 713-725.
[10] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[11] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[12] Guang-ming NIE,Bo XIE,Yan-tao TIAN. Design of cooperative adaptive cruise control algorithm based on Frenet framework [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1687-1695.
[13] Ming LIU,Xue-wen RONG,Yi-bin LI,Shuai-shuai ZHANG,Yan-fang YIN,Jiu-hong RUAN. Speed adaptive control of mobile robot based on terrain clustering analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1496-1505.
[14] Ting ZHOU,Yu-gong XU,Bin WU. Adaptive fractional PIλDμ sliding mode control method for speed control of spherical robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 728-737.
[15] Ji-qing CHEN,Qing-sheng LAN,Feng-chong LAN,Zhao-lin LIU. Trajectory tracking control based on tire force prediction and fitting [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1565-1573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .