Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 512-519.doi: 10.13229/j.cnki.jdxbgxb.20230477

Previous Articles    

Evaluate the validity of traffic congestion dispersion based on random forest method

Yao SUN1,2(),Bao-zhen YAO1(),Zi-jian BAI2   

  1. 1.School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China
    2.Tianjin Municipal Engineering Design & Research Institute Co. ,Ltd. ,Tianjin 300051,China
  • Received:2023-05-12 Online:2025-02-01 Published:2025-04-16
  • Contact: Bao-zhen YAO E-mail:sunyao@mail.dlut.edu.cn;yaobaozhen@dlut.edu.cn

Abstract:

To evaluate the effectiveness of short video dissemination on traffic congestion alleviation, this paper takes Tik Tok short video dissemination as the research object, and through the analysis of the dissemination characteristics of short videos, selects 5 major elements and 13 dimensions to construct an indicator system for short video characteristics. Based on above, a random forest model of machine learning is constructed to predict effective probabilistic of traffic short video dissemination and compare it with traditional prediction models. In particular, this paper proposes the concept of traffic diversion validity index for the first time, and quantitatively analyzes the effectiveness of short video on traffic diversion. Taking the road in the Five Avenue of Tianjin as an example, the results show that the six dimensions of the source, theme, material, purpose, communication power and comment content guide of the short traffic video have a strong correlation with their effective communication probability, and the average effective communication probability is in the range of 0.19-0.28; the final calculation results of the short video traffic guidance effectiveness index of Line 1 and Line 2 are 0.008 pcu/person-time and 0.011 pcu/person-time, respectively. Generally speaking, it is considered that the effect of traffic congestion relief is obvious. This paper provides new ideas for road traffic control in the new media era.

Key words: urban traffic, traffic dispersion, random forest, short video, TikTok

CLC Number: 

  • U491.4

Table 1

Feature elements of short video"

评价分类特征要素具体维度
内容生产来源原创;政务号;媒体号;娱乐号
时长<10 s;10~60 s;>60 s
题材情景型;内容型
主题服务类;宣传类;娱乐类;报道类
素材图片;音频;字幕合成;监控画面;二次加工
用途怀念;记录;警示;感想;娱乐
内容组织话题标签有关联;没有关联
主题策划有;没有
内容传播传播力点赞;评论;分享
评论内容指向与主题相关;不相关
内容消费评论态度肯定;质疑;悲伤;愤怒等
内容运营定位有上线视频;无上线视频;界面有定位;无定位
功能有功能介绍;无功能介绍

Fig. 1

Framework of the random forest model"

Fig. 2

Gini coefficients of short video characteristic elements"

Fig. 3

Prediction accuracy verification of random forest model"

Table 2

Comparing the results of different prediction models"

预测模型预测精度/%平均绝对百分比误差
ARMA79.060.458
BPNN84.390.395
SVM92.510.157
RF95.360.128

Fig. 4

Example verification"

Table 3

Observations of road traffic flow before and after the short video dissemination"

车流量/

(pcu·h-1

星期一星期二星期三星期四星期五

7:30~

8:30

17:00~18:00

7:30~

8:30

17:00~18:00

7:30~

8:30

17:00~18:00

7:30~

8:30

17:00~18:00

7:30~

8:30

17:00~18:00
线路一1 8451 9521 7341 8901 6231 6621 6041 6471 7591 803
线路二1 4301 6341 3881 5241 6961 6471 7321 7901 82618 68

Table 4

Results of t-Test"

项目

对照组1

(6~10日)

对照组2

(13~17日)

实验组

(20~24日)

平均1 751.91 776.91 653.5
方差14 259.6512 109.6626 666.94
观测值101010

泊松相关

系数

0.995 494-0.321 81
假设平均差00
df99
t Stat.-5.505 191.345 582

PT<=t

单尾

0.000 1890.105 677

PT<=t

双尾

0.000 3780.211 354

Table 5

Effectiveness analysis of short video short videos dissemination on road traffic dispersion"

日期时间

累计播放量

/人次

有效传播

概率/%

累计有效传播

频次/人次

线路一有效性

指数/(pcu·人次-1

线路二有效性

指数/(pcu·人次-1

星期三7:30~8:3033 9520.3511 8830.0240.020
17:00~18:0046 7200.3215 9690.0140.011
星期四7:30~8:3060 2380.3620 8350.0150.013
17:00~18:0065 3910.3022 3810.0110.014
星期五7:30~8:3073 9440.3325 2040.0040.014
17:00~18:0076 2080.2625 7920.0020.015
平均76 2080.3425 7920.0080.011
1 吴帆超. 论新媒体语境下城市形象的传播影响[J]. 传播力研究, 2020, 4(18): 36-37.
Wu Fan-chao. On the communication influence of city image in the context of new media[J]. Research on Transmission Competence, 2020, 4(18): 36-37.
2 罗艺漫. 移动短视频于城市品牌化中的传播与突破——以抖音APP中厦门城市形象为例[J]. 传媒论坛, 2021, 4(1): 27-28.
Luo Yi-man. Communication and breakthrough of mobile short video in city branding[J]. Media Forum, 2021, 4(1): 27-28.
3 田丽君, 杨茜, 黄海军, 等. 基于累积前景理论的出行方式选择模型及实证[J]. 系统工程理论与实践, 2016, 36(7): 1778-1785.
Tian Li-jun, Yang Qian, Huang Hai-jun, et al. The cumulative prospect theory-based travel mode choice model and its empirical verification[J]. System Engineering Theory and Practice, 2016, 36(7): 1778-1785.
4 宗芳, 路峰瑞, 唐明, 等. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报: 工学版, 2018, 48(4): 1023-1028.
Zong Fang, Lu Feng-rui, Tang Ming, et al. Impact of habit and traffic condition on travel route selection[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(4): 1023-1028.
5 潘晓锋, 左志. 基于潜在类别模型的出行决策机理异质性研究[J]. 交通运输工程与信息学报, 2022, 20(1): 55-62.
Pan Xiao-feng, Zuo Zhi. Utilizing a latent class model to explore heterogeneity in travel decision mechanism[J]. Journal of Transportation Engineering and Information, 2022, 20(1): 55-62.
6 凃强, 程琳, 林芬, 等. 考虑出行者风险态度的最优路径搜索[J]. 吉林大学学报: 工学版, 2019, 49(3): 720-726.
Tu Qiang, Cheng Lin, Lin Fen, et al. Finding shortest path considering traveler's risk attitude[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 720-726.
7 齐航, 于跃洋, 王光超, 等. 策略性交通出行选择行为研究评述: 实验经济学方法的应用[J]. 交通运输工程与信息学报, 2022, 20(3): 141-153.
Qi Hang, Yu Yue-yang, Wang Guang-chao, et al. A literature review of laboratory experimental studies on travel decisions under strategic uncertainty in directed transportation networks: the application of experimental economics methodology[J]. Journal of Transportation Engineering and Information, 2022, 20(3): 141-153.
8 申婵, 崔洪军. 基于可靠性最短路的实时定制公交线路优化研究[J]. 交通运输系统工程与信息, 2019, 19(6): 99-104.
Shen Chan, Cui Hong-jun. Optimization of real-time customized shuttle bus lines based on reliability shortest path[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 99-104.
9 Pel A, Bliemer M, Hoogendoorn S. Hybrid route choice modeling in dynamic traffic assignment[J]. Transportation Research Record Journal of the Transportation Research Board, 2009, 2091: 100-107.
10 安实, 崔娜, 于航. 基于Multi-agent 协商的出行信息个性化服务策略[J]. 西南交通大学学报, 2010, 45(4): 627-634.
An Shi, Cui Na, Yu Hang. Personalized service strategy of travel information based on Multi-agent negotiation[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 627-634.
11 Jou R C. Modeling the impact of pre-trip information on commuter departure time and route choice[J]. Transportation Research, Part B Methodological, 2001, 35(10): 887-902.
12 刘凯, 周晶, 毕秀霞, 等. 出行者信息类型偏好对其路径选择行为影响研究[J]. 交通信息与安全, 2019, 37(5): 71-77.
Liu Kai, Zhou Jing, Bi Xiu-xia, et al. Impacts of traffic information type preference on urban travelers' route choice[J]. Journal of Transport Information and Safety, 2019, 37(5): 71-77.
13 宋现敏, 杨舒天, 刘明鑫, 等. 站点间公交行程时间波动特性及预测方法[J]. 吉林大学学报: 工学版, 2022, 52(8): 1792-1799.
Song Xian-min, Yang Shu-tian, Liu Ming-xin, et al. Fluctuation characteristics and prediction method of bus travel time between stations[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1792-1799.
14 宗芳, 王占中, 贾洪飞, 等. 基于支持向量机的通勤日活动-出行持续时间预测[J]. 吉林大学学报: 工学版, 2016, 46(2): 406-411.
Zong Fang, Wang Zhan-zhong, Jia Hong-fei, et al. Prediction of commuter's daily activity-travel duration time with support vector regression[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 406-411.
15 李志慧, 孙雅倩, 陶鹏飞, 等. 交通事故后的交通运行风险状态等级预测方法[J]. 吉林大学学报: 工学版, 2022, 52(1): 127-135.
Li Zhi-hui, Sun Ya-qian, Tao Peng-fei, et al. Prediction method of traffic operation risk level after traffic accident[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 127-135.
16 Sun Y, Yan Q, Jiang Y, et al. Reliability prediction model of further bus service based on random forest[J]. Journal of Algorithms & Computational Technology, 2017, 11(4): 327-335.
17 陆丹, 徐丹妮. 短视频政务号对城市形象的建构分析——以“珠海交警”抖音号为例[J]. 新媒体研究, 2020, 6(10): 57-60.
Lu Dan, Xu Dan-ni. Analysis of the construction of city image by short video government number—taking the TicTok account called "Zhuhai Traffic Police" as an example[J]. New Media Research, 2020, 6(10): 57-60.
18 方匡南, 吴见彬, 朱建平. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38.
Fang Kuang-nan, Wu Jian-bin, Zhu Jian-ping, et al. A review of technologies on random forests[J]. Statistics and Information Forum, 2011, 26(3): 32-38.
19 朱少武, 孙海春, 罗万杰, 等. 基于GPS数据的交通出行模式及转换点识别算法[J]. 山东科技大学学报: 自然科学版, 2021, 40(1): 61-70.
Zhu Shao-wu, Sun Hai-chun, Luo Wan-jie, et al. Traffic travel mode and conversion point recognition algorithm based on GPS data[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(1): 61-70.
20 李浩, 张杉, 曹斌, 等. 基于城市道路卡口数据的交通流量预测[J]. 重庆大学学报, 2020, 43(11): 29-40.
Li Hao, Zhang Shan, Cao Bin, et al. Prediction traffic flow based on teaffic data of urban road check points[J]. Journal of Chongqing University, 2020, 43(11): 29-40.
21 .城市道路工程设计规范 [S].
[1] Guang-yue NIAN,Hai-xiao PAN,Jian SUN. Exploring relationship between urban built environment and road traffic performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 141-149.
[2] Chun-jiao DONG,Yu-xiao LU,She-qiang MA,Peng-hui LI. Identification of Ebike violation behaviors by considering waiting tolerance time [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2540-2546.
[3] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[4] Shu-hong MA,Guo-mei LIAO,Yan HUANG,Jun-jie ZHANG. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1913-1922.
[5] Zhi-hua XIONG,Dai-yue DONG,Chun-jiao DONG,Yan ZHENG,Chao XIE. Combined decision-choice behavior of spectators considering personal preferences [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 979-986.
[6] Jiao-rong WU,Qing-kai LIN,Yong-qi DENG. Identification method of potential public transportation lane demand based on bus line operation stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 692-699.
[7] Wen-hui ZHANG,Jing YI. Optimization of bus stop system considering capacity and queuing delays [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 146-154.
[8] Shi-jun SONG,Min FAN. Design of big data anomaly detection model based on random forest algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2659-2665.
[9] Ya-rang YANG,Yun-hu WU. Blockage fault detection of wireless sensor communication network based on random forest [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1490-1495.
[10] Bin WANG,Bing-hui HE,Na LIN,Wei WANG,Tian-yang LI. Tea plantation remote sensing extraction based on random forest feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1719-1732.
[11] Xian-yan KUANG,Zi-ru CHEN. Dynamic game comity behavior at pedestrians′ crossing on unsignal-controlled roads based on cellular automata [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 837-846.
[12] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[13] Chun-jiao DONG,Dai-yue DONG,Cheng-xiang ZHU-GE,Li ZHEN. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2618-2625.
[14] Zhen CAO,Lu-yao CUI,Bin LEI,Jing-yi WANG,Shuang-sheng CAO. Feature dimensionality reduction and random forest method in intelligent diagnosis of rolling bearings for urban rail trains [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2287-2293.
[15] Shi-jun YANG,Yu-long PEI,Heng-yan PAN,Guo-zhu CHENG,Wen-hui ZHANG. Characteristics analysising and prediction of dwelling time of urban bus [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2031-2039.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!