Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2693-2702.doi: 10.13229/j.cnki.jdxbgxb.20231262
Yuan-ning LIU1,2(
),Xing-zhe WANG1,2,Zi-yu HUANG3,Jia-chen ZHANG1(
),Zhen LIU1,4
CLC Number:
| [1] | Huang S, Yang J, Fong S, et al. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges[J]. Cancer Letters, 2020, 471: 61-71. |
| [2] | Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. |
| [3] | Guan W L, He Y, Xu R H. Gastric cancer treatment: recent progress and future perspectives[J]. Journal of Hematology & Oncology, 2023, 16(1): 57-84. |
| [4] | 覃丽粒, 马小波, 赵天业, 等. MMP-9和TIMP-1表达在胃癌根治术后患者预后评估中的作用[J]. 吉林大学学报: 医学版, 2022, 48(1): 163-171. |
| Qin Li-li, Ma Xiao-bo, Zhao Tian-ye, et al. Effects of MMP-9 and TIMP-1 expressions on prognostic evaluation of gastric cancer patients after radical gastrectomy[J]. Journal of Jilin University (Medicine Edition), 2022, 48(1): 163-171. | |
| [5] | 崔海康, 张旭东, 李晓宁, 等. 细胞焦亡分型和APOD 预测胃癌患者预后作用的生物信息学分析[J]. 吉林大学学报: 医学版, 2023, 49(5): 1268-1279. |
| Cui Hai-kang, Zhang Xu-dong, Li Xiao-ning, et al. Bioinformatics analysis on predition effect of subtypes of cell pyroptosis and APOD on prognosis of gastric cancer patients[J]. Journal of Jilin University (Medicine Edition), 2023, 49(5): 1268-1279. | |
| [6] | Boorn H G, Engelhardt E G, Kleef J, et al. Prediction models for patients with esophageal or gastric cancer: a systematic review and meta-analysis[J]. Plos One, 2018, 13(2): No.e0192310. |
| [7] | Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Springer Science and Business Media LLC, 2018, 18: 500-510. |
| [8] | Tran K A, Kondrashova O, Bradley A, et al. Deep learning in cancer diagnosis, prognosis and treatment selection[J]. Genome Medicine, 2021, 13(1): 152-168. |
| [9] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
| [10] | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521: 436-444. |
| [11] | Katzman J L, Shaham U, Cloninger A, et al. Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network[J]. BMC Medical Research Methodology, 2018, 18(1): 24-35. |
| [12] | Choi S, Kim S. Artificial intelligence in the pathology of gastric cancer[J]. Journal of Gastric Cancer, 2023, 23(3): 410-427. |
| [13] | Deepa P, Gunavathi C. A systematic review on machine learning and deep learning techniques in cancer survival prediction[J]. Progress in Biophysics and Molecular Biology, 2022, 174: 62-71. |
| [14] | Lipkova J, Chen R J, Chen B, et al. Artificial intelligence for multimodal data integration in oncology[J]. Cancer Cell, 2022, 40(10): 1095-1110. |
| [15] | Boehm K M, Khosravi P, Vanguri R, et al. Harnessing multimodal data integration to advance precision oncology[J]. Nature Reviews Cancer, 2021, 22(2): 114-126. |
| [16] | Wei T, Yuan X, Gao R, et al. Survival prediction of stomach cancer using expression data and deep learning models with histopathological images[J]. Cancer Science, 2022, 114(2): 690-701. |
| [17] | Cox D R. Regression models and life-tables[J]. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 1972, 34(2): 187-202. |
| [18] | Cox D R, Oakes D. Analysis of survival data[J]. Biometrics, 1985, 41(2): 593-594. |
| [19] | Tarkhan A, Simon N, Bengtsson T, et al. Survival prediction using deep learning[C]∥Proceedings of AAAI Spring Symposium on Survival Prediction–Algorithms, Challenges, and Applications, Virtual, USA, 2021: 1-8. |
| [20] | Li H, Lin D, Yu Z, et al. A nomogram model based on the number of examined lymph nodes–related signature to predict prognosis and guide clinical therapy in gastric cancer[J]. Frontiers in Immunology, 2022, 13: No.947802. |
| [21] | Wu J, Wang X, Wang N, et al. Identification of novel antioxidant gene signature to predict the prognosis of patients with gastric cancer[J]. World Journal of Surgical Oncology, 2021, 19(1): No.1901219. |
| [22] | Dai W, Xiao Y, Tang W, et al. Identification of an emt-related gene signature for predicting overall survival in gastric cancer[J]. Frontiers in Genetics, 2021, 12: No. 661306. |
| [23] | Wang M, Jing J, Li H, et al. The expression characteristics and prognostic roles of autophagy-related genes in gastric cancer[J]. PeerJ, 2021, 9: No.e10814. |
| [24] | Liu M, Li J, Huang Z, et al. Gastric cancer risk-scoring system based on analysis of a competing endogenous RNA network[J]. Translational Cancer Research, 2020, 9(6): 3889-3902. |
| [25] | Kourou K, Exarchos T P, Exarchos K P, et al. Machine learning applications in cancer prognosis and prediction[J]. Computational and Structural Biotechnology Journal, 2015, 13: 8-17. |
| [26] | Shivaswamy P K, Chu W, Jansche M. A support vector approach to censored targets[C]∥ Proceedings of Seventh IEEE International Conference on Data Mining, Omaha, USA, 2007: 655-660. |
| [27] | Ishwaran H, Kogalur U B, Blackstone E H, et al. Random survival forests[J]. Annals of Applied Statistics, 2008, 2: No.AOAS169. |
| [28] | Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785-794. |
| [29] | Liu P, Fu B, Yang S X, et al. Optimizing survival analysis of xgboost for ties to predict disease progression of breast cancer[J]. Institute of Electrical and Electronics Engineers, 2021, 68: 148-160. |
| [30] | Ma B, Yan G, Chai B, et al. XGBLC: an improved survival prediction model based on XGBoost[J]. Bioinformatics, 2021, 38(2): 410-418. |
| [31] | Li G, Huo D, Guo N, et al. Integrating multiple machine learning algorithms for prognostic prediction of gastric cancer based on immune-related lncRNAs[J]. Frontiers in Genetics, 2023, 14: No.1106724. |
| [32] | Chai H, Zhou X, Zhang Z, et al. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction[J]. Computers in Biology and Medicine, 2021, 134: No.104481. |
| [33] | Wang Y, Zhang Z, Chai H, et al. Multi-omics cancer prognosis analysis based on graph convolution network[C]∥Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Houston, USA, 2021: 1564-1568. |
| [34] | Zhang Y, Xiong S, Wang Z, et al. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis[J]. Methods, 2023, 213: 1-9. |
| [35] | Avelar P H C, Tavares A R, Silveira T L T, et al. Superpixel image classification with graph attention networks[C]∥Proceedings of 33rd SIBGRAPI Conference on Graphics, Patterns and Images, Porto de Galinhas, Brazil, 2020: 203-209. |
| [36] | Velickovic P, Cucurull G, Casanova A, et al. Graph Attention Networks[EB/OL]. [2023-11-04]. . |
| [37] | Fu X, Patrick E, Yang J Y H, et al. Deep multimodal graph-based network for survival prediction from highly multiplexed images and patient variables[J]. Computers in Biology and Medicine, 2023, 154: No.106576. |
| [38] | Duan M, Wang Y, Zhao D, et al. Orchestrating information across tissues via a novel multitask GAT framework to improve quantitative gene regulation relation modeling for survival analysis[J]. Briefings in Bioinformatics, 2023, 24(4): 1-10. |
| [39] | Ye L, Zhang Y, Yang X, et al. An ovarian cancer susceptible gene prediction method based on deep learning methods[J]. Frontiers in Cell and Developmental Biology, 2021, 9: No.730475. |
| [40] | Adeoye J, Hui L, Koohi M M, et al. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis[J]. International Journal of Medical Informatics, 2022, 157: No.104635. |
| [41] | Lerademacher J, Wang X. Time-to-event data: an overview and analysis considerations[J]. Journal of Thoracic Oncology, 2021, 16(7): 1067-1074. |
| [42] | Amin M B, Greene F L, Edge S B, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA-A Cancer Journal for Clinicians, 2017, 67(2): 93-99. |
| [43] | Marcolini A, Bussola N, Arbitrio E, et al. Histolab: a python library for reproducible digital pathology preprocessing with automated testing[J]. Software X, 2020, 20: No.101237. |
| [44] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
| [45] | Brentnall A R, Cuzick J. Use of the concordance index for predictors of censored survival data[J]. Statistical Methods in Medical Research, 2018, 27(8): 2359-2373. |
| [46] | Kaplan E L, Meier P. Nonparametric estimation from incomplete observations[J]. Journal of the American Statistical Association, 1958, 53(282): 457-481. |
| [47] | Pan Q K, Xu X X, Qi C, et al. Feature fusion: graph attention network and cnn combing for hyperspectral image classification[C]∥Proceedings of the 5th International Conference on Control and Computer Vision, New York, USA, 2022: 171-178. |
| [48] | Xie Y, Niu G, Da Q, et al. Survival prediction for gastric cancer via multimodal learning of whole slide images and gene expression[C]∥Proceedings of 2022 IEEE International Conference on Bioinformatics and Biomedicine, Las Vegas, USA, 2022: 1311-1316. |
| [49] | 张德洪, 郑明珠, 李家秋, 等. 基于MSR1 mRNA 和蛋白在泛癌组织中表达的生物信息学分析及其意义[J]. 吉林大学学报: 医学版, 2023, 49(2): 425-439. |
| Zhang De-hong, Zheng Ming-zhu, Li Jia-qiu, et al. Bioinformatics analysis based on expressions of MSR1 mRNA and protein in pan-cancer tissue and its significance[J]. Journal of Jilin University (Medicine Edition), 2023, 49(2): 425-439. | |
| [50] | Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]∥2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618-626. |
| [51] | Krzyziński M, Spytek M, Baniecki H, et al. Survshap(t): time-dependent explanations of machine learning survival models[J]. Knowledge-Based Systems, 2023, 262: 110234. |
| [1] | Jing-shu YUAN,Wu LI,Xing-yu ZHAO,Man YUAN. Semantic matching model based on BERTGAT-Contrastive [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2383-2392. |
| [2] | Hui-zhi XU,Dong-sheng HAO,Xiao-ting XU,Shi-sen JIANG. Expressway small object detection algorithm based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2003-2014. |
| [3] | Ru-bo ZHANG,Shi-qi CHANG,Tian-yi ZHANG. Review on image information hiding methods based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1497-1515. |
| [4] | Jian LI,Huan LIU,Yan-qiu LI,Hai-rui WANG,Lu GUAN,Chang-yi LIAO. Image recognition research on optimizing ResNet-18 model based on THGS algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1629-1637. |
| [5] | Bin WEN,Yi-fu DING,Chao YANG,Yan-jun SHEN,Hui LI. Self-selected architecture network for traffic sign classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1705-1713. |
| [6] | Zhen-jiang LI,Li WAN,Shi-rui ZHOU,Chu-qing TAO,Wei WEI. Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1336-1345. |
| [7] | Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730. |
| [8] | Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197. |
| [9] | Yuan-ning LIU,Zi-nan ZANG,Hao ZHANG,Zhen LIU. Deep learning-based method for ribonucleic acid secondary structure prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 297-306. |
| [10] | Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637. |
| [11] | Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645. |
| [12] | Xin-gang GUO,Ying-chen HE,Chao CHENG. Noise-resistant multistep image super resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2063-2071. |
| [13] | Bai-you QIAO,Tong WU,Lu YANG,You-wen JIANG. A text sentiment analysis method based on BiGRU and capsule network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2026-2037. |
| [14] | Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766. |
| [15] | Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776. |
|
||