吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 235-240.doi: 10.13229/j.cnki.jdxbgxb201401038

• paper • Previous Articles     Next Articles

Video saliency computational model and its application in video advertising

ZHAO Shi-jie, HAN Jun-wei, HE Sheng, CHENG Gong, GUO Lei   

  1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
  • Received:2012-08-30 Online:2014-01-01 Published:2014-01-01

Abstract:

This paper proposes a novel video saliency computational model based on frequency domain analysis, which is simple and efficient. First, the original video is parsed to a series of consecutive video scene images. Then, the space domain saliency and time domain saliency of the video scene images are computed, respectively. In each domain, the saliency of each frame is estimated by using Renyi entropy. Finally, both space domain and time domain results are fused to obtain the overall saliency. Application results in video advertising system and comparison with state-of-the-art approach demonstrate the effectiveness of the proposed model.

Key words: information processing, video saliency analysis, frequency analysis, Renyi entropy, video advertising

CLC Number: 

  • TN911

[1] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

[2] Walther D, Koch C. Modeling attention to salient proto-objects[J]. Neural Networks, 2006, 19(9): 1395-1407.

[3] Liu T, Yuan Z J, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367.

[4] Hou X D, Zhang L Q. Saliency detection:a spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007:1-8.

[5] Guo C L, Ma Q, Zhang L M, et al. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

[6] Wolf W. Key frame selection by motion analysis[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 1996: 1228-1231.

[7] Li K M, Zhang T, Hu X T, et al. Human-centered attention models for video summarization[C]//ACM Special Interest Group on Computer-Human Interaction, 2010: 1-27.

[8] Ma Y F, Hua X S, Lu L, et al. A generic framework of user attention model and its application in video summarization[J]. IEEE Transactions on Multimedia, 2005, 7(5): 907-919.

[9] Wang R X, McKenna S, Han J W, et al. Visualizing image collections using high-entropy layout distributions[J]. IEEE Transactions on Multimedia, 2010, 12(8): 803-813.

[10] Pierre B, Itti L. Of bits and wows:a Bayesian theory of surprise with applications to attention[J]. Neural Networks, 2010, 23(5):649-666.

[11] Mei T, Hua X S, Yang L J, et al. Videosense: towards effective online video advertising[C]//Proceedings of the 15th International Conference on Multimedia, 2007: 1075-1084.

[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!