吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 828-833.doi: 10.13229/j.cnki.jdxbgxb201403040

• Orignal Article • Previous Articles     Next Articles

Face recognition based on eigen weighted modular two-directional two-dimensional PCA

GU Bo-yu,SUN Jun-xi,LI Hong-zuo,LIU Hong-xi,LIU Guang-wen   

  1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2013-06-18 Online:2014-03-01 Published:2014-03-01

Abstract: An improved modular Two-directional Two-dimensional Principle Component Analysis (2D(PCA)) with eigen weight for face recognition is proposed. First, the image is divided into sub-blocks and the features are extracted by modular 2D(PCA). Then, the feature weight is assigned to each sub-block of every image according to the contribution for recognition of the sub-block. Finally, the testing samples are classified by nearest neighborhood classification of weighted distance. The contribution of each sub-block is determined self-adaptively according to the proportion of local feature information in eigen space. This algorithm does not need any prior knowledge. Experimental results show that the recognition rate of the proposed algorithm is effectively improved.

Key words: information processing, pattern recognition, face recognition, principal component analysis(PCA), eigen weighted, feature extraction

CLC Number: 

  • TN911.73
[1] Jafri R, Arabnia H R. A survey of face recognition techniques[J]. Journal of Information Processing Systems, 2009, 5(2): 41-68.
[2] Tan X, Chen S, Zhou Z H, et al. Face recognition from a single image per person: A survey[J]. Pattern Recognition, 2006, 39(9): 1725-1745.
[3] Kirby M, Sirovich L. Application of the KL procedure for the characterization of human faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
[4] Turk M A, Pentland A P. Face recognition using eigenfaces[C]∥1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991: 586-591.
[5] 宋怀波, 史建强. 应用PCA理论进行多人脸姿态估计的方法[J]. 吉林大学学报:工学版, 2013, 43(增刊1): 43-46.
Song Huai-bo, Shi Jian-qiang. Pose estimation of varied human faces based on PCA method[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(Sup.1): 43-46.
[6] Gottumukkal R, Asari V K. An improved face recognition technique based on modular PCA approach[J]. Pattern Recognition Letters, 2004, 25(4): 429-436.
[7] Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
[8] 陈伏兵, 陈秀宏, 张生亮,等.基于模块 2DPCA 的人脸识别方法[J]. 中国图象图形学报, 2006, 11(4): 580-585.
Chen Fu-bing, Chen Xiu-hong, Zhang Sheng-liang, et al.A human face recognition method based on modular 2DPCA[J]. Journal of Image and Graphics, 2006, 11(4): 580-585.
[9] Gao Q. Is two-dimensional PCA equivalent to a special case of modular PCA?[J]. Pattern Recognition Letters, 2007, 28(10): 1250-1251.
[10] Zhang D, Zhou Z H. (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition[J]. Nerocomputing, 2005, 69(1): 224-231.
[11] 李欣, 王科俊, 贲晛烨. 基于MW(2D)2PCA的单训练样本人脸识别[J]. 模式识别与人工智能, 2010(1): 77-83.
Li Xin, Wang Ke-jun, Ben Xian-ye. MW(2D)2PCA Based face recognition with single training sample[J]. Pattern Recognition and Artificial Intelligence, 2010(1): 77-83.
[12] 张翠平, 苏光大. 人脸识别技术综述[J]. 中国图象图形学报, 2000, 5(11):885-894.
Zhang Cui-ping, Su Guang-da. Human face recognition: a survey[J]. Journal of Image and Graphics, 2000, 5(11): 885-894.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[5] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[6] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[7] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[8] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[9] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[10] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[11] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[12] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[13] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[14] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[15] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAN Xiao-mei, LIN Xue-dong, LI De-gang, LI Chuang. Injection quantity control strategy for starting to idling transition of light duty diesel engine[J]. 吉林大学学报(工学版), 2016, 46(4): 1103 -1108 .
[2] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556 -1562 .
[3] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827 -1837 .