吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 1005-1011.doi: 10.13229/j.cnki.jdxbgxb201503047

Previous Articles     Next Articles

Improved spatially selective noise filtration algorithm

LU Wei-tao, YANG Wen-ge, HONG Jia-cai   

  1. Department of Optical and Electrical Equipment, Academy of Equipment, PLA, Beijing 101416,China
  • Received:2013-08-30 Online:2015-05-01 Published:2015-05-01

Abstract: In traditional Spatially Selective Noise Filtration (SSNF), the correlation is weakened by wavelet coefficient shift among different decomposition scales, and the wavelet coefficients are seriously affected by the noise at fine scales. To resolve these problems an improved Spatially Selective Noise Filtration (ISSNF) algorithm is proposed. The relative shift of wavelet coefficients between two adjacent scales is deduced, and then a shift correlation algorithm is proposed. Considering that the higher the scale is, the stronger the correlation of wavelet coefficient is, and that divergence happens during decomposition, a reverse processing method is proposed, in which constraints are provided from higher scale to lower scale. According to statistic principle, the wavelet coefficient of the highest is processed by threshold filtering. The performances of the proposed algorithm, the traditional algorithm and two existing improved algorithms are compared by processing Blocks signal and Heavy Sine signal. Moreover, the above filtration algorithms are applied in group delay estimation of certain GEO satellite. Results of Monte Carlo simulation and processing of measured data demonstrate that the performance of the proposed algorithm is better in noise reduction.

Key words: information processing technology, ssnf, shift correlation, reverse order processing, threshold filtering, group delay estimation

CLC Number: 

  • TN98
[1] 潘泉,孟晋丽,张磊,等.小波滤波方法及应用[J]. 电子与信息学报,2007,29(1):236-242.
Pan Quan, Meng Jin-li, Zhang Lei, et al. Wavelet filtering method and its application[J]. Journal of Electronics & Information Technology,2007,29(1):236-242.
[2] Witkin A P. Scale space filtering[C]∥Processing of 8th International Joint Conference on Artificial Intelligence, Karlsruhe,Germany,1983:1019-1021.
[3] Xu Yan-sun, Weaver J B, Healy D M, et al.Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Trans on Image Processing,1994,3(6):747-758.
[4] Pan Quan,Zhang Lei,Dai Guan-zhong,et al. Two denoising methods by wavelet transform[J]. IEEE Trans on Signal Processing,1999,47(12):3401-3406.
[5] 赵瑞珍,屈汉章,宋国乡. 基于小波系数区域相关性的阈值滤波算法[J]. 西安电子科技大学学报:自然科学版,2001,28(3):324-327.
Zhao Rui-zhen,Qu Han-zhang,Song Guo-xiang. A threshold filtering algorithm based on the region relativity of the wavelet coefficients[J]. Journal of Xi-Dian University,2001,28(3):324-327.
[6] 苏哲,许录平,王勇,等. 改进小波空域相关滤波的脉冲星微弱信号降噪[J]. 系统工程与电子技术, 2010,32(6):2500-2505.
Su Zhe,Xu Lu-ping,Wang Yong,et al. Pulsar weak signal denoising based on improved wavelet spatial correlation filtering[J]. Journal of Systems Engineering and Electronics,2010,32(6):2500-2505.
[7] 王敏君,熊邦书,黄丽贞,等. 基于小波尺度相关的图像清晰度判别方法[J]. 计算机系统应用,2010,19(8):164-167.
Wang Min-jun,Xiong Bang-shu, Huang Li-zhen,et al. Image definition evaluation method based on wavelet scale correlation[J]. Computer Systems & Applications,2010,19(8):164-167.
[8] Zhang L, Bao P. Denoising by spatial correlation thresholding[J]. IEEE Trans on Circuits and Systems for Video Technology,2003,13(6):535-538.
[9] 祝传广,邓喀中,范洪冬. 基于尺度空间相关的自适应小波滤波算法研究[J]. 苏州大学学报:自然科学版,2012,28(3):32-36.
Zhu Chuan-guang,Deng Ka-zhong,Fan Hong-dong. Adaptive wavelet threshold for signal de-noising based on the scale space correlation[J]. Journal of Suzhou University(Natural Science Edition),2012,28(3):32-36.
[10] 向东阳,吴正国,胡文彪, 等. 改进的小波变换系数相关去噪方法[J]. 振动、测试与诊断,2010,30(5):561-565.
Xiang Dong-yang, Wu Zheng-guo, Hu Wen-biao,et al. Improved denoising algorithm using correlation of wavelet coefficient[J]. Journal of Vibration Measurment & Diagnosis,2010,30(5):561-565.
[11] 吴永超,马秀荣,张媛. 一种改进的小波系数相关滤波算法[J]. 信息与电子工程,2012,10(5):604-607.
Wu Yong-chao, Ma Xiu-rong, Zhang Yuan. An improved denoising algorithm using correlation of wavelet coefficients[J]. Information and Electronic Engineering, 2012,10(5):604-607.
[12] 路伟涛,杨文革,洪家财, 等. FX型相关处理方案及野值剔除算法[J]. 中国空间科学技术,2012,32(6):54-61.
Lu Wei-tao,Yang Wen-ge,Hong Jia-cai,et al. FX correlation scheme and improvement on delete algorithm[J]. Chinese Space Science and Technology, 2012,32(6):54-61.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!