吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 2069-2074.doi: 10.13229/j.cnki.jdxbgxb201506048

Previous Articles     Next Articles

Improvement of resampling algorithm of particle filter

LI Juan1, LIU Xiao-long1, LU Chang-gang2, ZUO Ying-ze1   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130012, China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2014-07-08 Online:2015-11-01 Published:2015-11-01

Abstract: To solve the problem of particles degeneracy in the particle filter algorithms, a Classified Resampling (CR) algorithm is proposed. This algorithm adopts different duplication schemes according to the quantity of selected particles; furthermore, it replenishes new particles in the case that the number of effective particles is reduced. Simulation results demonstrate that, with smaller number of particles or longer simulation period, the proposed algorithm has minor Root Mean Square Error (RMSE) compared with Multinomial Resampling (MR) and Systematic Resampling (SR), and with multiple simulations the variance of RMSE is smaller, which indicates that the robustness, durability and stability of the proposed algorithm are improved.

Key words: information processing, particle filters, particles degeneracy, resampling algorithm, classified resampling

CLC Number: 

  • TN911.7
[1] 陈飞. 基于粒子滤波的无线传感器网络目标跟踪算法研究[D].长春:吉林大学通信工程学院,2009.
Chen Fei. The target tracking algorithm research based on particle filtering in wireless sensor network[D]. Changchun: College of Communication Engineering, Jilin University, 2009.
[2] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2):425-437.
[3] Gordon N, Salmond D. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J]. IEE Proc of Institute Electric Engineering,1993,140(2):107-113.
[4] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Proceedings on Signal Processing,2002,50(2):174-188.
[5] Liu J S, Chen R. Sequential monte carlo methods for dynamic systems[J]. Journal of the American Statistical Association,1998,93(443):1032-1044.
[6] Li T C, Sattar T P, Sun S D. Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters[J]. Signal Process,2012,92(7):1637-1645.
[7] Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association,1999,94(446):590-599.
[8] 高建坡,韦志辉,孟迎军,等. 基于观测似然重要性采样的粒子滤波算法[J]. 系统仿真学报,2009,21(12):3705-3709.
Gao Jian-po, Wei Zhi-hui, Meng Ying-jun, et al. Particle filter based on observation likelihood importance sampling[J]. Journal of System Simulation,2009,21(12):3705-3709.
[9] 胡士强,敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005,20(4):361-365.
Hu Shi-qiang, Jing Zhong-liang. Overview of particle filter algorithm[J]. Control and Decision,2005,20(4):361-365.
[10] 胡研研. 基于粒子滤波的目标跟踪算法研究[D].长春:吉林大学通信工程学院,2012.
Hu Yan-yan. Research on target tracking algorithm based on particle filter[D]. Changchun: College of Communication Engineering, Jilin University,2012.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!