Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1531-1538.doi: 10.13229/j.cnki.jdxbgxb20180257

Previous Articles    

Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability

Yun-long ZHANG1(),Liu-guang ZHOU1,2,Jing WANG1,Chun-li WU3(),Xiang LYU3   

  1. 1. School of Transportation Science, Jilin Jianzhu University, Changchun 130118, China
    2. Jiangsu Dong Dao Transportation Science & Technology Group,Nanjing 210011,China 3. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2018-03-22 Online:2019-09-01 Published:2019-09-11
  • Contact: Chun-li WU E-mail:zyl_ql@qq.com;clwu@jlu.edu.cn

Abstract:

In order to study the mechanical properties of silty subgrade and the silt subgrade slope stability under the freeze-thaw cycles, the static triaxial test was conducted with different water contents to study the variation law of the cohesion and the internal friction angle of silty sand after different numbers of freeze-thaw cycles in seasonally frozen area. The influences of freeze-thaw cycle on silt subgrade slope stability coefficient of the different slopes and different fill heights were analyzed by the finite element numerical model based on the test results. The results show that the influence of freeze-thaw cycle on cohesion of silty sand is gradually enhanced with the increase in water content, the cohesion can be reduced 70%-80% when the water content is large. The internal friction angle decreases firstly and then increases slightly with the increase in the number of freeze-thaw cycles, the influence of freeze-thaw cycles on the internal friction angle of silty sand is weakened with the increase in water content. The silt subgrade slope stability coefficient is decreased by the freeze-thaw cycles and the largest decrease after freeze-thaw cycles can reach 49% of stability coefficient without freeze-thaw cycles. The maximum fill height of silt subgrade should not exceed 4 meters in seasonally frozen area. If the subgrade fill height is less than 3 meters, the limit slope should not be steeper than 1∶1.5. If the fill height is more than 3 meters, the limit slope should not exceed 1∶2.5.

Key words: road engineering, slope stability, test and model, silt subgrade, shear strength parameters, freeze-thaw cycles

CLC Number: 

  • U416.1

Fig.1

Particle grading curve of sample"

Fig.2

Samples for triaxial test"

Fig.3

Automatic triaxial instrument"

Fig.4

Effect of freeze-thaw cycles on cohesion"

Fig.5

Effect of freeze-thaw cycles on internal friction angle"

Fig.6

Shear strength of sample under different confining pressures"

Fig.7

General structure of subgrade"

Fig.8

Subgrade after freezing and thawing"

Fig.9

ANSYS numerical model of subgrade"

Fig.10

Critical state before subgrade slope instability"

Fig.11

Subgrade slope stability coefficient without freezing"

Fig.12

Effect of freeze-thaw cycles on subgrade height"

Fig.13

Effect of freeze-thaw cycles on subgrade slope"

Fig.14

Effect of freeze-thaw cycles on subgrade ultimate height"

Fig.15

Effect of freeze-thaw cycles on subgrade ultimate slope"

Fig.16

Subgrade ultimate slope according to different subgrade height"

1 BondarenkoG I, SadovskyA V. Water content effect of the thawing clay soils on shear strength[C]∥Proceedings of 7th International Symposium on Ground Freezing, Rotterdam, Netherlands, 1991: 123-127.
2 OgataN, KataokaT, KomiyaA. Effect of freezing-thawing on the mechanical properties of soil[C]∥Proceedings of the 4th International Symposium on Ground Freezing, Sapporo, 1985: 5-7.
3 谈云志, 吴翩, 付伟, 等. 改良粉土强度的冻融循环效应与微观机制[J]. 岩土力学, 2013, 34(10): 2827-2834.
TanYun-zhi, WuPian, FuWei, et al. Strength and micromechanism of improved silt under freeze-thaw cycle effect[J]. Rock and Soil Mechanics, 2013, 34(10): 2827-2834.
4 朱志铎, 刘松玉, 邵光辉, 等. 粉土及其稳定土的三轴试验研究[J]. 岩土力学, 2005, 26(12): 1967-1971.
ZhuZhi-duo, LiuSong-yu, ShaoGuang-hui, et al. Research on silts and silts treated with stabilizers by triaxial shear tests[J]. Rock and Soil Mechanics, 2005, 26(12): 1967-1971.
5 严晗, 王天亮, 刘建坤, 等. 反复冻融条件下粉砂土动力学参数试验研究[J]. 岩土力学, 2014, 35(3): 683-688.
YanHan, WangTian-liang, LiuJian-kun, et al. Experimental study of dynamic parameters of silty soil subjected to repeated freeze-thaw[J]. Rock and Soil Mechanics, 2014, 35(3):683-688.
6 严晗, 王天亮, 刘建坤. 粉砂土反复冻胀融沉特性试验研究[J]. 岩土力学, 2013, 34(11): 3159-3165.
YanHan, WangTian-liang, LiuJian-kun. Experimental study of repeated frost heave and thaw settlement properties of silty sand[J]. Rock and Soil Mechanics, 2013, 34(11): 3159-3165.
7 蔡迎春, 郑元勋, 刘忠玉, 等. 飞机荷载作用下粉砂土路基动力响应研究[J]. 岩土力学, 2012, 33(9): 2863-2868.
CaiYing-chun, ZhengYuan-xun, LiuZhong-yu, et al. Study of dynamic response of silty sand subgrade loaded by airplane[J]. Rock and Soil Mechanics, 2012, 33(9): 2863-2868.
8 常丹, 刘建坤, 李旭. 冻融循环下粉砂土应力-应变归一化特性研究[J]. 岩土力学, 2015, 36(12): 3500-3505.
ChangDan, LiuJian-kun, LiXu. Normalized stress-strain behavior of silty sand under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36(12): 3500-3505.
9 严晗, 刘建坤, 王天亮. 冻融对粉砂土力学性能影响的试验研究[J]. 北京交通大学学报, 2013, 37(4): 73-77.
YanHan, LiuJian-kun, WangTian-liang. Experimental research of influences of freeze-thaw on the mechanical properties of silty soil[J]. Journal of Beijing Jiao Tong University, 2013, 37(4): 73-77.
10 常丹, 刘建坤, 李旭. 冻融循环下粉砂土屈服及强度特性的试验研究[J]. 岩石力学与工程学报, 2015, 34(8): 1721-1728.
ChangDan, LiuJian-kun, LiXu. Experimental study on yielding and strength properties of silty sand under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1721-1728.
11 陈鹏, 徐博侯. 基于因素敏感性的边坡稳定可靠度分析[J]. 中国公路学报, 2012, 25(4): 42-48.
ChenPeng, XuBo-hou. Reliability analysis of slope stability based on factors sensitivity[J]. China Journal of Highway and Transport, 2012, 25(4): 42-48.
12 李航, 于玲. 冻融循环作用下路基边坡稳定性变化研究[J]. 路基工程, 2011(5): 26-28, 32.
LiHang,YuLing. Study on subgrade slope stability under the effect of freeze-thaw cycle[J]. Subgrade Engineering, 2011(5): 26-28, 32.
13 陈国庆, 黄润秋, 石豫川, 等. 基于动态和整体强度折减法的边坡稳定性分析[J]. 岩石力学与工程学报, 2014, 33(2): 243-256.
ChenGuo-qing,HuangRun-qiu,ShiYu-chuan,et al. Stability analysis of slope based on dynamic and whole strength reduction methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 243-256.
14 栾茂田, 武亚军, 年廷凯. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报, 2003, 23(3): 1-8.
LuanMao-tian, WuYa-jun, Ting-kaiNian . An alternative criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(3): 1-8.
15 陈祖煜. 土质边坡稳定分析[M]. 北京: 中国水利水电出版社, 2003.
[1] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[2] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[3] Xiao⁃zhen LI,Jun⁃zhe LIU,Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI. Effect of carbonation on nitrite ion distribution in cement paste [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1162-1168.
[4] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[5] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[6] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[7] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[8] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[9] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[10] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[11] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[12] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[13] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[14] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[15] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!