Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1615-1621.doi: 10.13229/j.cnki.jdxbgxb20190194

Previous Articles    

Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting

Xin TONG1,2,3(),Ya-jiao ZHANG3,Yu-shan HUANG3,Zheng-zheng HU2,Qing WANG1,2,Zhi-hui ZHANG1,2()   

  1. 1. Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun 130022, China
    2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022
    3. Guangzhou Husun Technologies Co. , Ltd. ,Guangzhou 510705, China
  • Received:2019-03-04 Online:2019-09-01 Published:2019-09-11
  • Contact: Zhi-hui ZHANG E-mail:tongxin_gz@husun.com.cn;zhzh@jlu.edu.cn

Abstract:

304L stainless steel was prepared by selective laser melting (SLM) technology. The microstructure, morphology and mechanical properties of as-fabricated parts were characterized. The results show that no obvious pores and inclusion defects are found in the metallographic structure. The surface roughness of the sample decreases with the increase in the inclination angle during the SLM process. To keep the geometrical characteristics of as-fabricated SLM parts, the thickness of thin-walled specimen should be more than 0.3 mm; the diameter of circular hole without support should be controlled in the range of 1 mm to 12.5 mm; the designed outer sharp angles of the specimen should be more than 5°; the inner sharp angles should be more than 15° when placed vertically to the base plate, and more than 8° when placed horizontally. It is found that the orientation of the specimen axis with respect to the working platform does not influence the tensile strength and yield strength. When the build direction of the specimens is 0° with the base plate, the maximum tensile strength of the specimens reaches 684.7 MPa. When the build direction was 30° with the base plate, the maximum post-fracture elongation of the specimens reaches 47.7%. Meanwhile, the impact energy has the maximum value of 196.3J, and the fracture mechanism is ductile fracture.

Key words: selective laser melting, 304L stainless steel, microstructure, mechanical properties, morphology

CLC Number: 

  • TG430.40

Table 1

Chemical composition of 304L"

元素 质量分数%
C 0.02~0.08
Si ≤1.0
Mn 1.0~2.0
Cr 18.0~20.0
Ni 8.0~12.0
S ≤0.03
P ≤0.045
Mo -
Fe 余量

Fig.1

Design of mechanics sample size and forming angle"

Fig.2

Microstructure of 304L samples"

Fig.3

R a curves with different inclination angles"

Fig.4

R a of different angle"

Fig.5

Mechanical properties of different SLM manufactured angles"

Fig.6

Tensile fracture scanning morphology at different angles"

1 陈凯, 杜东海, 陆辉, 等 . 304L不锈钢在高温高压水中的腐蚀疲劳裂纹扩展行为[J]. 腐蚀与防护, 2018, 39(1): 17-23.
Chen Kai , Du Dong-hai , Lu Hui , et al . Corrosion fatigue crack growth behavior of 304L stainless steel in high temperature and high pressure water[J]. Corrosion & Protection, 2018, 39(1): 17-23.
2 唐望磊, 曹东, 王虎, 等 . 弹性应力下304L不锈钢在3.5% NaCl溶液中的点蚀行为[J]. 材料保护, 2018, 51(10): 16-21.
Tang Wang-lei , Cao Dong , Wang Hu , et al . Pitting corrosion behavior of 304L stainless steel in 3.5% NaCl solution under elastic stress[J]. Material Protection, 2018, 51(10): 16-21.
3 罗开玉, 柴卿锋, 王长雨, 等 . 激光冲击强化对2Cr13不锈钢腐蚀疲劳性能的影响[J/OL]. [2019-02-15]. http:∥www.cnki.com.cn/Article/CJFDTotal-JLGY2018052300U.htm
4 杨永强, 陈杰, 宋长辉, 等 . 金属零件激光选区熔化技术现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 3-15.
Yang Yong-qiang , Chen Jie , Song Chang-hui , et al . Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 3-15.
5 Frazier W E . Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.
6 Gao W , Zhang Y , Ramanujan D , et al . The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69: 65-89.
7 杨强, 鲁中良, 黄福享, 等 . 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016, 59(12): 26-31.
Yang Qiang , Lu Zhong-liang , Huang Fu-xiang , et al . Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016, 59(12): 26-31.
8 Gu D D , Meiners W , Wissenbach K , et al . Laser additive manufacturing of metallic components: materials, processes andmechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
9 谭丽斌, 余心宏 . 3D打印技术在金属成形领域的应用和展望[J]. 精密成形工程, 2015, 7(6): 58-64.
Tan Li-bin , Yu Xin-hong . Application and prospect of 3D printing in metal forming[J]. Precision Forming Engineering, 2015, 7(6): 58-64.
10 Herzog D , Seyda V , Wycisk E , et al . Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.
11 Huang H S , Liu P , Mokasdar A , et al . Additive manufacturing and its societal impact: a literature review[J] International Journal of Advanced Manufacturing Technology, 2012, 67(5-8): 1191-1203.
12 Suryawanshi J , Prashanth K G , Scudino S , et al . Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115: 285-294.
13 戴晓琴, 陈瀚宁, 雷剑波, 等 . 激光增材制造304不锈钢显微结构特征与性能研究[J]. 热加工工艺, 2017, 46(16): 83-86.
Dai Xiao-qin , Chen Han-ning , Lei Jian-bo , et al . Study on microstructure and properties of 304 stainless steel by laser additive augmentation[J]. Hot Working Technology, 2017, 46(16): 83-86.
14 杨丹, 宁玉恒, 赵宇光, 等 . 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 材料导报, 2017, 31(24): 133-140.
Yang Dan , Ning Yu-heng , Zhao Yu-guang , et al . The effect of process parameters on the structure, wear resistance and corrosion resistance of laser cladding Ni-based alloy coating on 304 stainless steel surface[J]. Materials Review, 2017, 31(24): 133-140.
15 白玉超 . 马氏体时效钢激光选区熔化成型机理及其控性研究[D]. 广州: 华南理工大学机械与汽车工程学院, 2018.
Bai Yu-chao . Research on the mechanism and properties controllability of selective laser melting of maraging steel[D]. Guangzhou: College of Mechanical and Automotive Engineering, South China University of Technology, 2018.
16 Debroy T , Wei H L , Zuback J S , et al . Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018(92): 112-224.
[1] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[2] Fang⁃wu MA,Shi⁃xian CHEN,Lu HAN,Hong⁃yu LIANG,Yong⁃feng PU. Correlation between metal surface morphology and metal⁃plastic direct adhesion strength [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 816-821.
[3] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[4] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[5] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[6] ZHENG Xiao-yi, SUN Da-qian, LI Xin, DU Gui-gang, XIN Wei-da, REN Zhen-an. Microstructure and properties of cladded Al-Nb layers reinforced by NbAl3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1531-1536.
[7] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[8] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[9] ZHANG Zhi-qiang, LIU Cong-hao, HE Dong-ye, LI Xiang-ji, LI Ji-xuan. Effect of hot stamping process of boron steel on shape precision based on performance gradient distribution [J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[10] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[11] GUAN Qing-feng, LI Yan, HOU Xiu-li, YANG Sheng-zhi, WANG Xiao-tong. Modification of solid solution Mg-Gd-Y-Nd alloy irradiated by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[12] DENG Cheng-jiang, HE Xiao-cong, XING Bao-ying, WANG Yu-qi, ZENG Kai, DING Yan-fang. Mechanical properties of self-piercing riveted lap joints in dissimilar metal sheets of aluminum and copper [J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
[13] ZHANG Rui, YANG Ming-ming, LIU Hai-bao, ZENG Gui-yin, PAN Run-duo, LI Jian-qiao. Numerical simulation of sand flow fixation characteristics of plantar surface of ostrich didactyl foot [J]. 吉林大学学报(工学版), 2015, 45(2): 508-515.
[14] TIAN Li-mei, SHANG Zhen, HU Guo-liang, LI Nan. Numerical simulation of the lift and drag characteristics of passenger car based on morphological bionics [J]. 吉林大学学报(工学版), 2014, 44(5): 1283-1289.
[15] GUAN Qing-feng,JI Le,CAI Jie,YANG Sheng-zhi,LIU Shi-chao,ZHANG Zai-qiang,HOU Xiu-li. Surface microstructure and properties of 3Cr13 martensitic stainless steel after high current pulsed electron beam bombardment [J]. 吉林大学学报(工学版), 2014, 44(3): 712-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!