Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2108-2120.doi: 10.13229/j.cnki.jdxbgxb20200301

Previous Articles    

Analysis of damage model of mortars strengthened with CFRP under ultimate freeze⁃thaw and load

Shuan-cheng GU1(),Hong-bin NIE1,2()   

  1. 1.School of Architecture and Civil Engineering,Xi′an University of Science and Technology,Xi′an 710054,China
    2.College of Rail Engineering,Shaanxi Railway Institute,Wei Nan 714000,China
  • Received:2020-05-10 Online:2021-11-01 Published:2021-11-15
  • Contact: Hong-bin NIE E-mail:gushuanchengxakj@163.com;nhb18391382063@126.com

Abstract:

In order to study repair effect of concrete column wrapped Carbon Fiber Reinforced Plastics (CFRP) after extreme freeze-thaw environment, according to the requirements of code of China's current concrete durability (GB/T 50476—2008) and technical specifications for strengthening concrete structures with carbon fiber reinforced polymer laminate, axial pressure test was designed by concrete members wrapped by different spacing and dosage CFRP after freeze-thaw cycle 0 times, 50 times, 50 times, 100 times, 150 times and 200 times. The compression properties of concrete repaired with CFRP were studied by sample microstructure and considering three factors: compression load, vertical overall displacement and the ratio of expansion and compression. The results show the freeze-thaw has a more significant impact on compressive strength, but the compressive strength of freezing-thawing damaged concrete can be improved effectively after CFRP repair, up to 630.6%, and the improvement of the bearing capacity of specimens repaired with CFRP is not related to the repair spacing, but to the fiber amount of CFRP. The overall vertical displacement increases with the increase of freezing-thawing times, and decreases with the increase of the repaired CFRP. With the freezing-thawing cycle, the ratio of expansion and compression first decreases, then increases and then decreases, and the first peak value first increases and then decreases, and the second peak gradually decreases from the "convex" peak gradually to the peak of the collapse of the concave, and the distance between the two peaks gradually decreases. Through microstructure analysis, thechange of the ratio of expansion and compression is mainly caused by freezing-thawing increasing compression and hoop effect of CFRP.

Key words: civil engineering, carbon fiber reinforced plastics, freez-thaw cycle test, pressure teste, microstructure analysis, break model

CLC Number: 

  • TU531

Table 1

Temperature survey of sichuan-tibet railway"

里程最高温度/℃最低温度/℃里程最高温度/℃最低温度/℃
D1K222+648.94423-37DK249+995.2088-39
D1K222+672.84369-25DK250+5.32120-32
D1K222+648.94446-14DK250+12.98427-26
D3K229+81.88012-34DK264+75013-40
D3K229+102.34620-27DK264+762.32120-31
D3K229+113.45823-18DK264+780.12424-27

Table 2

Mix parameters of concrete"

配合比水泥碎石
3001857281093
碎石孔径/mm16105
筛余量3.153.91.75
直径/mm10.50.25
筛余量1.56.480.2

Table 3

Mechanical properties of CFRP"

CFRP类型抗拉强度/MPa标准尺寸/mm弹性系数/GPa延伸率 /%编号
JGN350130.072401.627
349124.502321.425

Table 4

Parameters of specimens"

组别及编号冻融次数CFRP间隙/mm试验抗压强度/(N·mm–2纤维/g
1组1?10对比组20.2
1?250对比组19.80
1?3100对比组21.2
1?4150对比组20.4
1?5200对比组20.4
2组2?10020.1
2?250020.3
2?3100019.9100
2?4150020.1
2?5200020.3
3组3?1010018.9
3?25010019.9
3?310010020.150
3?415010020.2
3?520010020.3
4组4?1020020.1
4?25020020.1
4?310020020.350
4?415020020.9
4?520020020.4

Fig.1

Damaged samples by different freezing-thawing cycles"

Table 5

quality and movement loss table"

冻融次数/N质量损失率/%弹性模量损失率/%损伤评价
000对比组
250.249384.645适应期
502.17531.357损伤
753.841342.016损伤
1005.441869.659损伤
1256.632581.436破坏
1507.825489.326破坏
1759.131198.347破坏
20010.2314----破坏

Fig.2

CFRP repair freezing-thawing column"

Fig.3

Axial pressure test"

Fig.4

Failure patterns of specimens"

Table 6

Characteristics table on destruction of the specimen"

编号极限承载力/kN开裂载荷/kN破坏类型

第1次突变值

/kN

突变率β/%第2次突变值/kN突变率γ/%
混凝土CFRP混凝土CFRP
1?1283.261180.213-3条裂缝-14.4465.1--
1?2151.61146.254-5条裂缝-47.60631.4119.01488.6
1?356.11223.823-6条裂缝-14.48025.847.80785.2
1?439.87114.156-8条裂缝-4.06610.312.04130.2
1?512.2133.232-12条裂缝-1.23410.18.56127.9
2?1347.701-88.231压碎4 凹凸屈曲18.7765.4135.95139.1
2?2220.262-65.982压碎5 凹凸屈曲25.99111.8188.55485.6
2?3196.672-53.261压碎3局部屈曲51.72526.3--
2?4151.784-47.271压碎2 凹凸屈曲47.35731.2135.8489.5
2?589.231-40.236压碎未发生屈曲28.01931.460.05267.3
3?1323.314253.47812.3422条裂缝纤维断裂20.0456.299.57930.8
3?2196.407147.30514.2102条裂缝纤维断裂34.17517.4167.14285.1
3?3100.96161.58610.4994条裂缝未破坏11.20711.1--
3?461.21935.7527.3465条裂缝未破坏7.53020.358.24178.8
3?550.23124.1106.5307条裂缝未破坏15.47130.831.19362.1
4?1330.234231.16319.8144条裂缝未破坏16.8415.177.27523.4
4?2139.841103.4829.7897条裂缝未破坏41.67329.8100.83876.4
4?3112.12890.8248.4096条裂缝未破坏18.276826.4--
4?467.23157.1465.6478条裂缝未破坏11.49717.130.38845.2
4?559.63451.8815.36712条裂缝未破坏10.07816.925.10642.1

Table 7

Analysis of bearing capacity"

冻融循环次数/n未修复损失率/%全包未修复损失率/%修复间距100 mm试件损失率/%修复间距200 mm试件损失率/%
00.0000.0000.0000.000
5046.47736.65239.25257.654
10080.19143.43668.77366.046
15085.92456.34681.06579.641
20095.68874.33784.46481.942

Fig.5

Load diagra"

Fig.6

Vertical overall displacement diagram"

Fig.7

Stress-expansion compression ratio analysis of CFRP repair samples"

Fig.8

Microstructure diagram"

Fig.9

Simplified mechanical model"

Fig.10

Relation between total loss D and strain"

Fig.11

Load - strain curve of CFRP repaired freezing-thawing damaged column"

1 岳清瑞,陈小兵,牟宏远.碳纤维材料(CFRP)加固修补混凝土结构新技术[J].工业建筑,1998(11):1-5, 34.
Yue Qing-rui,Chen Xiao-bing,Mu Hong-yuan. New technology of carbon fibre reinforced plastics on strengthening & repairing concrete structures[J]. Industrial Construction, 1998(11):1-5, 34.
2 叶列平,赵树红,李全旺,等.碳纤维布加固混凝土柱的斜截面受剪承载力计算[J].建筑结构学报,2000(2):59-67.
Ye Lie-ping, Zhao Shu-hong, Li Quan-wang,et al. Caleulation of shear strength of concrete column strengthened with carbon fibre reinforced plastics[J].Journal of Building Structures,2000(2):59-67.
3 赵彤,张景明,谢剑,等.碳纤维布改善钢筋混凝土短柱延性的试验研究[J].世界地震工程,2001(1):82-86.
Zhao Tong, Zhang Jing-ming, Xie Jian, et al. Experimentls study on the application of continuous carbon fibre reinforced plastics sheet to improve the dyctility of reinforced concrete short columns[J].World Information of Earthquake Enginering,2001(1):82-86.
4 陈少雄. 碳纤维布和角钢复合加固钢筋混凝土柱抗震性能研究[D].武汉:武汉大学土木建筑工程学院,2004.
Chen Shao-xiong. Experimental research on seismis behavior of reinforced concrete columns combination rehabilitation with bonded steel angles and carbon fibre reinforced plastics sheet[D]. Wuhan:School of Civil Engineering,Wuhan University,2004.
5 卢亦焱,童光兵,赵国藩,等.外包角钢与碳纤维布复合加固钢筋混凝土偏压柱承载力计算分析[J].土木工程学报,2006(8):19-25.
Lu Yi-yan, Tong Guang-bing, Zhao Guo-fan,et al. Analysis of the bearing capacity of RC eccentr ic compression columns encased in angle steels and strengthened with CFRP[J].China Civil Engineering Journal,2006(8):19-25.
6 顾冬生,吴刚,吴智深,等.CFRP加固高轴压比钢筋混凝土短圆柱抗震性能试验研究[J].工程抗震与加固改造,2006(6):71-77.
Gu Dong-sheng, Wu Gang, Wu Zhi-shen,et al. Experimental study on seismic performance of RC short circular columns strengthened with CFRP composites under high-level compression[J].Earthquake Resistant Engineering and Retrofitting,2006(6):71-77.
7 苑寿刚. CFRP约束带载加固混凝土柱滞回性能试验研究[D].沈阳:东北大学资源与土木工程学院,2009.
Yuan Shou-gang. Experimental study on the hysteretic behavior of preloaded concrete columns with CFRP confinement[D]. Shenyang:College of Resources and Civil Engineering,Northeastern University,2009.
8 李趁趁,高丹盈,赵军.干湿环境下FRP全裹与条带间隔加固混凝土圆柱耐久性试验研究[J].土木工程学报,2009,42(11):8-14.
Li Chen-zhen, Gao Dan-ying, Zhao Jun. Experimental study on durability of FRP entirely-wrapped concrete cylinders and FRP strip-wrapped concrete cylinders under wet-dry cycles insaltsolution[J]. China Civil Engineering Journal, 2009,42(11):8-14.
9 聂红宾. CFRP布加固冻融损伤混凝土构件力学性能研究[D].沈阳:沈阳大学,2013.
Nie Hong-bin. Research on behavior of freeze-thaw damageable concrete members strengthened by CFRP sheets[D].Shenyang:Shenyang University,2013.
10 张凯,姜福香,殷彦波.冻融循环下CFRP加固混凝土结构耐久性试验研究[J].工程建设,2015,47(1):7-11, 19.
Zhang Kai, Jiang Fu-xiang, Yin Yan-bo. Experimental study on durability of concrete structure reinforced with CFRP in freeze-thaw cycle[J]. Engineering construction,2015,47(1):7-11, 19.
11 王苏岩,宋泽林,丁荔.冻融循环与持载对CFRP加固高强混凝土梁变形性能的影响[J].建筑科学与工程学报,2017,34(2):26-32.
Wang Su-yan,Song Ze-lin,Ding Li.Influence of freeze-thaw cycles and sustained loads on deformation performance of high strength concrete beam strengthened with CFRP[J]. Journal of Architecture and Civil engineer,2017,34(2):26-32.
12 洪雷,江海鑫,王苏岩.冻融循环下预应力CFRP加固高强混凝土耐久性[J].铁道科学与工程学报,2017,14(2):227-232.
Hong Lei, Jiang Hai-xin, Wang Su-yan. Durability of high strength concrete strengthened with prestressed CFRP under freeze-thaw cycles[J]. Journal of Railway Science and Engineering,2017,14(2):227-232.
13 何媛媛,武丽,董江峰,等.CFRP加固对冻融再生混凝土短柱承载性能的影响[J].建筑材料学报, 2019, 22(3):451-458, 466.
He Yuan-yuan, Wu Li, Dong Jiang-feng,et al. The effects of CFRP reinforcement on the strength of recycled concrete column under cycled feeze-thaw environment[J]. Journal of Building Materials, 2019, 22(3):451-458, 466.
14 普通混凝土长期性能和耐久性能试验方法标准:[S]. 北京: 中国建筑工业出版社, 2009.
15 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D].北京:清华大学土木工程系,2009.
Duan An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D]. Beijing:Department of Civil Engineering,Tsinghua University, 2009.
16 杨苗苗,封建湖,程晓晗,等. 求解复杂交通流模型的低耗散中心迎风格式[J]. 计算机工程, 2019, 45(6): 37-44.
Yang Miao-miao,Feng Jian-hu,Cheng Xiao-han,et al. Low dissipation central-upwind scheme for solving complex traffic flow model[J]. Computer Engineering, 2019, 45(6): 37-44.
17 李趁趁. FRP加固混凝土结构耐久性试验研究[D].大连:大连理工大学建设工程学部,2006.
Li Chen-chen. Experimental study on durability of FRP reinforced concrete structures [D].Dalian: Faculty of Infrastructure Engineering,Dalian University of Technology,2006.
[1] Jing ZHOU,Ya-jun LI,Wei-feng ZHAO,Zong-jian LUO,Guo-bin BU. Eccentric compression behavior of bamboo⁃plywood and steel⁃tube dual⁃confined dust⁃powder concrete columns [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2096-2107.
[2] Guang-tai ZHANG,Lu-yang ZHANG,Guo-hua XING,Yin-long CAO,Bao YI. Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 946-955.
[3] Liu LIU,Wei-xing FENG. Field measurement and calculation analysis of tunnel shield tunnel construction based on NNBR model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 245-251.
[4] Wei-xiao XU,Yang CHENG,Wei-song YANG,Jia-chang JU,De-hu YU. Quasi-static test of RC frame-seismic wall dual structural system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 268-277.
[5] De-shan SHAN,Xiao ZHANG,Xiao-yu GU,Qiao LI. Analytical method for elongation of stayed-cable with catenary configuration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 217-224.
[6] Su-duo XUE,Jian LU,Xiong-yan LI,Ren-jie LIU. Influence of grid⁃jumping arrangement on static and dynamic performance of annular crossed cable⁃truss structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1687-1697.
[7] Bo WANG,Yuan-zheng DONG,Li-xin DONG. Calculation of basic wind pressure based on short⁃term wind speed data [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1739-1746.
[8] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[9] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[10] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[11] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[12] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[13] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[14] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[15] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!