Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (6): 1281-1291.doi: 10.13229/j.cnki.jdxbgxb20210008

Previous Articles    

Complex system module classification based on Copula numerical interpretative structural modeling

Yu-bin ZHENG1,2(),Jie SONG1,2,Jin-tong LIU1,2(),Li-ming MU1,2,Zhe-hui CHEN1,2,Jun ZHENG1,2   

  1. 1.Key Laboratory of CNC Equipment Reliability,Ministry of Education,Jilin University,Changchun 130022,China
    2.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2021-01-06 Online:2022-06-01 Published:2022-06-02
  • Contact: Jin-tong LIU E-mail:zhengyb@jlu.edu.cn;jintongliu1324@jlu.edu.cn

Abstract:

Considering the influence of faults between units of complex system, the relationship between the faults among the units is analyzed. Relevant parameters of associated units are obtained through Copula Numerical Interpretative Structural Modeling (CNISM), and the fault association matrix among units is established to determine the initial clustering module. Using the degree of aggregation and coupling of modules as numerical quantization indexes, the objective function of the complex system unit fault clustering mathematical model is constructed. The Grouping Genetic Algorithm (GGA) is used to optimize the target function and determine the optimal clustering module. Finally, a certain machining center system is classified according to the above logic.

Key words: machining center, Copula numerical interpretative structural modeling, module classification, complex system, degree of aggregation, coupling

CLC Number: 

  • TG659

Fig.1

Classification process of complex systemunit module based on CNISM"

Table 1

Fault association level representation"

关系类型关系描述等级
无关联0
较弱基本独立0.2
一般关联微弱0.4
适中存在一定的关联0.6
较强关联较强0.8
极强不可分1

Table 2

Subsystem fault distribution function and its linear correlation coefficient"

子系统故障分布函数相关系数
数控系统(S1F1(t)=1-exp[-(t?/1147.6518)0.972]0.9021
进给系统(S2F2(t)=1-exp[-(t?/762.5621)0.7949]0.9647
液压系统(S3F3(t)=1-exp[-(t?/357.2172)0.7365]0.9495
气压系统(S4F4(t)=1-exp[-(t?/1075.4109)0.8648]0.9817
排屑系统(S5F5(t)=1-exp[-(t?/991.4704)1.7389]0.9696
润滑系统(S6F6(t)=1-exp[-(t?/1014.4202)0.8739]0.9664
刀库系统(S7F7(t)=1-exp[-(t?/1017.7001)1.0054]0.9621
防护系统(S8F8(t)=1-exp[-(t?/1745.0702)0.4951]0.9989
主轴系统(S9F9(t)=1-exp[-(t?/1377.2212)0.9244]0.9673
电气系统(S10F10(t)=1-exp[-(t?/878.1532)2.0632]0.9208
冷却系统(S11F11(t)=1-exp[-(t?/1314.6229)0.7198]0.9005

Table 3

Machine tool fault associated factors and their weights"

关联交互主要结构功能部件辅助部件
子系统S2S7S9S1S10S3S4S5S6S8S11
关联因素机械电子辅助
故障次数541735
故障频率0.50940.16040.3302
权重值0.50940.16040.3302

Table 4

Part of the processing center fault associated statistics[9]"

序号初始故障后序故障故障原因
1电气系统进给系统参考点开关问题,无法返回参考点
2气动系统刀库系统气压过低导致,机械手换不到位
3排屑系统防护装置铝屑进入卡住,致使Y轴防护损坏
4润滑系统排屑系统润滑油不足导致机床排屑机不工作
5液压系统进给系统Z轴平衡油缸压力不足Z轴单元报警
6数控系统刀库系统机床参数设置问题导致无法正常换刀
7润滑系统主轴系统润滑油杂质导致镗孔时主轴发出噪音
8电气系统排屑系统空气开关跳闸,导致排屑机失灵
9润滑系统进给系统润滑不良导致X轴传动有噪音
10电气系统主轴系统限位开关故障导致换刀时主轴不定向
11数控系统主轴系统机床参数设置问题导致主轴定位不准
12数控系统刀库系统OI控制失灵导致刀库数据混乱
13电气系统冷却系统跳闸致使水泵不运转
14电气系统主轴系统开关损坏导致主轴旋转不停
15排屑系统气动系统缸体混入异物拉出伤痕导致气缸损坏
16气动系统刀库系统气动电磁阀故障导致手动拿刀故障
17电气系统刀库系统接触器失灵导致机械手不能换刀
18数控系统进给系统参数设置错误导致X轴跟踪误差过大

Table 5

Initial cluster module quantization index and objective function results"

εKJEφ
040.12010.01320.5534
0.230.07090.01310.5289
0.4(0.6)20.04130.02270.5093

Table 6

Matlab optimized the results of 10 times"

优化次数JEφ
10.35890.01320.6729
20.31030.01490.6477
30.31360.01430.6497
40.31620.01670.6498
50.30740.01760.6449
60.35890.01320.6729
70.34840.01450.6669
80.31460.01590.6494
90.33060.01390.6584
100.33390.01570.6591

Fig.2

Iterative figure of J、E、φ"

Fig.3

Reliability function comparison curve"

Table7

Reliability under different conditions"

可靠度时间/h
1050100200300400500
Rsyste0.9430.8230.7220.5790.4770.3990.338
Ropt_group0.9150.7820.6640.4820.3420.2340.155
Rindep0.7580.4020.2100.0650.0220.0070.002
Rord_group10.9050.7400.5970.3960.2620.1710.109
Rord_group20.9510.7900.6320.4060.2590.1630.101
Rord_group30.9560.8050.6510.4270.2780.1780.113

Fig.4

Error contrast curve"

1 Murthy D N P, Nguyen D G. Study of a multi-component system with failure interaction[J]. European Journal of Operational Research, 1985, 21(3): 330-338.
2 Murthy D N P, Nguyen D G. Study of two-component system with failure interaction[J]. Naval Research Logistics Quarterly, 1985, 32(2): 239-247.
3 Satow T, Osaki S. Optimal replacement policies for a two-unit system with failure interactions[J]. Computers & Mathematics with Applications, 2003, 46(7): 1129-1138.
4 Leung K N F, Lai K K. A preventive maintenance and replacement policy of a series system with failure interaction[J]. Optimization, 2012, 61(2): 223-237.
5 Zhang N, Fouladirad M, Barros A. Optimal imperfect maintenance cost analysis of a two-component system with failure interactions[J]. Reliability Engineering & System Safety, 2018, 177: 24-34.
6 高文科, 张志胜, 周一帆, 等. 存在故障相关及不完备检测的主辅并联系统可靠性建模与维修策略[J]. 自动化学报, 2015, 41(12): 2100-2114.
Gao Wen-ke, Zhang Zhi-sheng, Zhou Yi-fan, et al. Reliability modeling and maintenance policy for main and supplementary parallel system with failure interaction and imperfect detection[J]. Acta Automatica Sinica, 2015, 41(12): 2100-2114.
7 梁光夏. 基于改进模糊故障Petri网的复杂机电系统故障状态评价与诊断技术研究[D]. 南京: 南京理工大学机械工程学院, 2014.
Liang Guang-xia. Research on fault state evaluation and diagnosis technology of complex electromechanical system based on improved fuzzy fault Petri net[D]. Nanjing: School of Mechanical Engineering, Nanjing University of Science and Technology, 2014.
8 张英芝, 吴茂坤, 申桂香, 等. 基于DEMATEL/ISM的组合机床故障相关性分析[J]. 工业工程, 2014, 17(3): 92-96, 127.
Zhang Ying-zhi, Wu Mao-kun, Shen Gui-xiang, et al. An analysis of failure correlation of assemble machine tool based on DEMATEL / ISM[J]. Industrial Engineering Journal, 2014, 17(3): 92-96, 127.
9 孙曙光, 申桂香, 张英芝, 等. 基于ISM与FMECA的加工中心故障分析[J]. 湖南大学学报: 自然科学版, 2015, 42(8): 47-52.
Sun Shu-guang, Shen Gui-xiang, Zhang Ying-zhi, et al. Failure analysis of machining center based on ISM and FMECA[J]. Journal of Hunan University (Natural Sciences), 2015, 42(8): 47-52.
10 潘立峰. 数控机床的多性能与多故障关联矩阵模型研究[D]. 武汉: 华中科技大学机械科学与工程学院, 2017.
Pan Li-feng. Research on association matrix between multi-performance and multi-faults of cnc machine tool[D]. Wuhan: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 2017.
11 Sushil. Interpreting the interpretive structural model[J]. Global Journal of Flexible Systems Management, 2012, 13(2): 87-106.
12 王富强, 苏义坤. 基于ISM的工业化建筑标准体系模块构建[J]. 山西建筑, 2018, 44(11): 35-37.
Wang Fu-qiang, Su Yi-kun. Construction of industrial building standard system module based on interpretive structure modeling and its optimization[J]. Shanxi Architecture, 2018, 44(11): 35-37.
13 Patton A J. A review of copula models for economic time series[J]. Journal of Multivariate Analysis, 2012, 110: 4-18.
14 孟书. 故障率相关下数控车床预防维修策略研究[D]. 长春: 吉林大学机械与航空航天工程学院, 2017.
Meng Shu. Research on preventive maintenance strategy of CNC lathe based on fault rate correlations[D]. Changchun: College of Mechanical and Aerospace Engineering, Jilin University, 2017.
15 彭伟. 基于故障诊断与可靠性分析的机械系统预防维修研究[D]. 成都: 电子科技大学机电工程学院, 2016.
Peng Wei. Mechanical system preventive maintenance research based on fault diagnosis and reliability analysis[D]. Chengdu: School of Mechatronics Engineering, University of Electronic Science and Technology, 2016.
16 张英芝, 郑锐, 申桂香, 等. 基于Copula理论的数控装备故障相关性[J]. 吉林大学学报: 工学版, 2011, 41(6): 636-640.
Zhang Ying-zhi, Zheng Rui, Shen Gui-xiang, et al. Failure dependency of CNC equipment based on copula theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(6): 636-640.
17 James T, Brown E, Ragsdale C T. Grouping genetic algorithm for the blockmodel problem[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 103-111.
18 曹永春, 邵亚斌, 田双亮, 等. 一种基于分组遗传算法的聚类新方法[J]. 西华大学学报: 自然科学版, 2013, 32(1): 39-43.
Cao Yong-chun, Shao Ya-bin, Tian Shuang-liang, et al. A new clustering method based on grouping genetic algorithm[J]. Journal of Xihua University (Natural Science), 2013, 32(1): 39-43.
19 张英芝, 刘津彤, 申桂香, 等. 基于故障相关性分析的数控机床系统可靠性建模[J]. 吉林大学学报:工学版, 2017, 47(1): 169-173.
Zhang Ying-zhi, Liu Jin-tong, Shen Gui-xiang, et al. Reliability modeling of CNC machine tools system based on failure correlation analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 169-173.
[1] Xin-tian LIU,Mu-zhou MA,Jia-long HE. Reliability prediction method of machining precision of machine tool parts based on fuzzy coupling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 377-383.
[2] Ying-zhi ZHANG,Sheng-dong HOU,Zhi-qiong WANG,Ren-hao DONG,Sheng YANG. Fault analysis of machining center based on gray theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 433-438.
[3] Hai-ji YANG,Jia-long HE,Guo-fa LI,Li-ding WANG,Si-yuan WANG. Application of improved failure mode and effect analysis method in risk analysis of spindle system of machining center [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 345-352.
[4] Gui-xiang SHEN,Lan LUAN,Ying-zhi ZHANG,Li-ming MU,Shu-bin LIANG. Fault propagation impact assessment of machining center components [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 63-69.
[5] Fang XU,Jun-ming ZHANG,Yun-feng HU,Ting QU,Yi QU,Qi-fang LIU. Lateral and longitudinal coupling real⁃time predictive controller for intelligent vehicle path tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2287-2294.
[6] Feng XUE,Chuan-lei HE,Qian HUANG,Jian LUO. Coordination degree of multimodal rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2040-2050.
[7] Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096.
[8] Zhen-jie QIAN,Cheng-qian JIN,Wen-sheng YUAN,You-liang NI,Guang-yue ZHANG. Frictional impact dynamics model of threshing process between flexible teeth and grains [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1121-1130.
[9] Guang-tai ZHANG,Jin-peng ZHANG,Ming-yang WANG,Dong-liang LU,Mei ZHANG. Seismic isolation performance of waste scrap tire pads under aging-loading coupling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 96-106.
[10] Jun FU,Yi-chen ZHANG,Chao CHENG,Zhi CHEN,Xin-long TANG,Lu-quan REN. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
[11] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[12] Jun-long LIU,Dong-ye SUN,Xiao-jun LIU,Yong YOU. Speed ratio control of electro⁃mechanical continuously variable transmission based on coupling characteristic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1951-1958.
[13] Guang YAN,Jian-zhong LU,Kai-yu ZHANG,Fan-yong MENG,Lian-qing ZHU. Temperature decoupling large range fiber Bragg grating strain sensor [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1682-1688.
[14] Hong-yan WANG,Yun-fei FANG,Sheng-qi ZHU,Bing-nan PEI. DOA estimation method considering mutual coupling effect in presence of non⁃uniform noise [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1706-1714.
[15] ZHAO Wei-qiang, GAO Ke, WANG Wen-bin. Prevention of instability control of commercial vehicle based on electric-hydraulic coupling steering system [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1305-1312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!