Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2107-2118.doi: 10.13229/j.cnki.jdxbgxb20220062

Previous Articles    

Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis

Ke-yong WANG1,2(),Da-tong BAO1,Su ZHOU1()   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Shanghai Hydrogen Propulsion Technology Co. ,Ltd. ,Shanghai 201804,China
  • Received:2022-01-13 Online:2022-09-01 Published:2022-09-13
  • Contact: Su ZHOU E-mail:wangkeyong@126.com;suzhou@tongji.edu.cn

Abstract:

Long short-term memory (LSTM) multi-classification algorithm can effectively realize the online intelligent fault diagnosis of vehicle fuel cells. However, in practical applications, the internal characteristics of vehicle fuel cells will decline with the increase of operating time, and the initial diagnosis model may not be able to meet long-term fault conditions. Aiming at this problem, PEMFC original and decay models based on AVL CURISE M software were built, and fault data was generated using the models. Then, an adaptive algorithm was designed, and the data generated by the model was used for adaptive training, so that the diagnosis model can adapt to the decline of the stack and ensure the accuracy of the online intelligent diagnosis of vehicle fuel cells. Based on this scheme, the actual fuel cell system has been tested and verified, which proves the effectiveness of the scheme. This scheme can adaptively update the weight of the diagnosis algorithm of the fuel cell system based on the "vehicle-cloud" platform and complete the aging of the stack. It has a good application prospect.

Key words: vehicle engineering, LSTM multi-classification, online intelligent diagnosis, model parameters, self-adaptation

CLC Number: 

  • TK91

Fig.1

Dynamic model of fuel cell system"

Fig.2

Current cases used to build the dataset"

Table 1

Dimensionality reduction results"

信号相关系数能在实际系统中获得

选择作为

数据集

空压机转速-0.0305
冷却泵转速0.0035
背压阀开度-0.1382
空气计量比-0.1068
电堆电压-0.0221
电堆电流0.0009
氢气流阻0.0775
氢气出压力0.0085
氢气流阻-0.1208
空气出口压力0.0289
空气入口压力0.0074
氢气入口压力0.0082
空气流量0.0006
氢气流量-0.0036

Fig.3

LSTM neural network unit"

Table 2

Data division details"

工况训练样本数量测试样本数量标签
正常12 3533 0080
轻微膜干11 3932 8481
严重膜干11 3932 8482
轻微水淹12 3533 0083
严重水淹12 3533 0084
轻微欠气11 0392 7595
严重欠气11 0392 7596

Table 3

Network structure"

结构层网络参数输出
长短时记忆网络层(LSTM)

步长(timestep):100

隐藏节点(hidden size):24

100×24
全连接层1(FC1)2424
激活层(Relu)2424
全连接层2(FC2)77

Fig.4

Neural network structure"

Table 4

Diagnostic results"

精确率召回率耗时/ms存储量/kbit
0.980.98<117

Table 5

Degradation of fuel cell physical parameters"

衰退项目原始模型衰退模型
催化层催化层厚度/mm0.010.009 5
催化层电子迁移率0.7570.719
参考交换电流密度3.3973.227

催化层活化能量/

(J·mol-1

66 00062 700
氧含量0.750.7125
水含量10.95
质子交换膜膜厚度/mm0.0250.023
热导率/[W·(m·K)-10.20.19
电导率(阿伦尼乌斯公式首项)/(S·m-10.510.48
电导率(阿伦尼乌斯公式尾项)/(S·m-110 54210 014.9
气体扩散层气体扩散层厚度/mm0.340.323
气体扩散层相对穿透率10.95
气体扩散层孔隙率0.4470.424
阳极双极板流动效率0.50.475
阳极双极板摩擦因数6.36.615
阴极双极板流动效率0.50.475
阴极双极板摩擦因数15.416.17

Fig.5

Adaptive algorithm flow"

Table 6

Hyper-parameters used in adaptive training"

超参数数值
批处理数量(Batch size)150
训练轮数(Epochs)4096
最大迭代次数6
自适应置信度0.95
初始学习率(Initial learning rate)5×10-4

Fig.6

Comparison between the adaptive diagnostic model and the original diagnostic model"

Fig.7

High power fuel cell system"

Table 7

Boundary conditions under normal conditions"

电流密度/(mA·cm-2空气计量比冷却水温度/℃
802.968
1002.868
2002.671
3002.574
4002.378
5002.279
6002.281
7002.183
8001.984
9001.985
10001.986
11001.887

Table 8

Boundary conditions of fault embedding"

状态空气计量比冷却水温度/℃
正常--
轻微膜干-+3
严重膜干-+5
轻微水淹--5
严重水淹--10
轻微欠气-0.1-
严重欠气-0.2-

Fig.8

Validate the fuel cell system and FCU used"

Fig.9

Current drawn by fault test"

Fig.10

High frequency resistance andair flow for fault test"

Fig.11

Last round of adaptive iterative trainingevaluation indicators"

Table 9

Adaptive iteration results after six round"

对比项目精确率召回率迭代后剩余数据
推理用时/ms54.21
迭代1轮0.9800.9786450
迭代2轮0.9820.982740
迭代3轮0.9830.984446
迭代4轮0.9820.981241
迭代5轮0.9770.981101
迭代6轮0.9830.979-

原始诊断模型

推理衰退数据

0.9060.901-
1 中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京:机械工业出版社,2021.
2 Benmouna A, Mohamed B, Daniel D, et al. Fault diagnosis methods for proton exchange membrane fuel cell system[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1534-1543.
3 周苏,胡哲,文泽军. 基于K均值和支持向量机的燃料电池在线自适应故障诊断[J]. 同济大学学报, 2019, 47(2): 255-260.
Zhou Su, Hu Zhe, Wen Ze-jun. A K-means/support vector machine based self-adaptive online fault diagnosis method for fuel cell system[J]. Journal of Tongji University, 2019, 47(2): 255-260.
4 Gu X, Hou Z J, Cai J. Data-based flooding fault diagnosis of proton exchange membrane fuel cell systems using LSTM networks[J]. Energy and AI, 2021, 4: No. 100056.
5 Shao M, Zhu X J, Cao H F, et al. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system[J]. Energy, 2014, 67: 268-275.
6 Sanchez D G, Garcia-Ybarra P L. PEMFC operation failure under severe dehydration[J]. International Journal of Hydrogen Energy, 2012, 37(8): 7279-7288.
7 Canut J M L, Latham R, Mérida W, et al. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 192(2): 457-466.
8 Hui L, Tang Y H, Wang Z W, et al. A review of water flooding issues in the proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 178(1): 103-117.
9 Zhang C Z, Zhou W J, Lan Z, et al. An experimental study on anode water management in high temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4666-4672.
10 Shimpalee S, Beuscher U, Zee J W V. Analysis of GDL flooding effects on PEMFC performance[J]. Electrochimica Acta, 2007, 52(24): 6748-6754.
11 O'Rourke J, Ramani M, Arcak M. In situ detection of anode flooding of a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6765-6770.
12 Kim M, Jung N, Eom K S, et al. Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2014, 266: 332-340.
13 Benmouna A, Becherif M, Depernet D, et al. Fault diagnosis methods for proton exchange membrane fuel cell system[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1534-1543.
14 朱添麟. 基于电压调节的车载燃料电池空气供给系统建模与控制[D]. 长春: 吉林大学通信工程学院, 2021.
Zhu Tian-lin. Modeling and control of vehicle fuel cell air supply system based on voltage regulation[D]. Changchun: College of Communication Engineering, Jilin University, 2021.
15 杨朵. 燃料电池空气供给系统控制与故障诊断策略研究[D]. 合肥: 中国科学技术大学计算机科学与技术学院, 2021.
Yang Duo. Research on control and fault diagnosis strategy fuel cell air supply system[D]. Hefei: School of Computer and Control Engineering, University of Science and Technology of China, 2021.
16 孙田. 重卡用大功率燃料电池发动机空气供给控制策略研究[D]. 北京: 北京交通大学机械与电子控制工程学院, 2020.
Sun Tian. Research on control strategy of high power fuel cell engine air supply for heavy-duty truck[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2020.
17 陈旭, 胡广地, 邓宇翔, 等. PEMFC燃料饥饿控制策略综述[J]. 电池, 2019, 49(2): 163-167.
Chen Xu, Hu Guang-di, Deng Yu-xiang, et al. Review of fuel starvation control strategies for PEMFC[J]. Battery, 2019, 49(2):163-167.
18 黄亮, 彭清, 谢长君, 等. 基于差分进化优化的支持向量机燃料电池故障诊断[J]. 电源技术, 2021, 45(10): 1316-1319.
Huang Liang, Peng Qing, Xie Chang-jun, et al. Fuel cell fault diagnosis for support vector machines optimized based on differential evolution algorithm[J]. Chinese Journal of Power Sources, 2021, 45(10): 1316-1319.
19 张少哲, 戴海峰, 袁浩, 等. 质子交换膜燃料电池电化学阻抗谱敏感性研究[J]. 机械工程学报, 2021, 57(14): 40-51.
Zhang Shao-zhe, Dai Hai-feng, Yuan Hao, et al. Sensiblity study on electrochemical impedance of proton exchange membrane fuel cell[J]. Joural of Mechanical Engineering, 2021, 57(14): 40-51.
20 贾坤晗. 进气相对湿度对车用燃料电池性能影响的研究[D]. 北京: 北京建筑大学机电与车辆工程学院, 2021.
Jia Kun-han. Research on the effects of inlet relative humidity on the performance of vehicle fuel cells[D]. Beijing: School of Mechatronics and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, 2021.
21 何红曈. 质子交换膜燃料电池内部水含量特性分析[D]. 北京: 北京建筑大学机电与车辆工程学院, 2021.
He Hong-tong. Analysis of the variation characteristics of water content in the flow channel of PEMFC[D]. Beijing: School of Mechatronics and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, 2021.
22 卫超强. 不同参数对质子交换膜燃料电池输出特性的影响[D]. 太原: 太原理工大学机械与运载工程学院, 2021.
Wei Chao-qiang. Effects of different parameters on the outpour characteristics of proton exchange membrane fuel cells[D]. Taiyuan: School of Mechanics and Transportation Engineering, Taiyuan University of Technology, 2021.
23 Devlin S J. Pearson correlation coefficient[EB/OL]. [2021-12-11].
[1] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[2] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[3] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[4] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[5] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[6] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[7] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[8] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[9] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
[10] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[11] Guang-ming NIE,Bo XIE,Yan-tao TIAN. Design of cooperative adaptive cruise control algorithm based on Frenet framework [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1687-1695.
[12] Shuai HAO,Chuan-tai CHENG,Jun-nian WANG,Jun-yuan ZHANG,You YU. Ergonomic optimization and test evaluation of sports SUV cockpit layout design [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1477-1488.
[13] Jia-xu ZHANG,Chong GUO,Chen WANG,Jian ZHAO,Xin-zhi WANG. Performance evaluation of automatic parking system based on hardware in the loop simulation platform [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1552-1560.
[14] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[15] Xiong LI,Feng-chong LAN,Ji-qing CHEN,Fang TONG. Comparison of injuries in front impact between Hybird III dummy model and CHUBM human biomechanical model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1264-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!