Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2139-2146.doi: 10.13229/j.cnki.jdxbgxb20220100

Previous Articles    

Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature

Qi-ming CAO(),Hai-tao MIN,Wei-yi SUN(),Yuan-bin YU,Jun-yu JIANG   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2022-01-26 Online:2022-09-01 Published:2022-09-13
  • Contact: Wei-yi SUN E-mail:caoqm1995@qq.com;swy_18@jlu.edu.cn

Abstract:

Aiming at the phenomenon of ice accretion and shutdown caused by the imbalance of water and heat during the cold start-up of proton exchange membrane fuel cell, a numerical model for heat transfer and temperature calculation of the cell is established based on the study of the mechanism of heat generation and heat transfer characteristics of the system. The evolution law of heat generation and heat dissipation of the system under different ice volumes is analyzed, the water and heat balance conditions for predicting cold start shutdown is established, and the effects of system parameters such as current densities on start-up performance are studied. The results show that when the heat generation and heat dissipation of the system are the same, the heat generation of the system will be lower than the latent heat of ice melting, resulting in shutdown. The high current density can increase temperature of the membrane electrode and reduce the heat transfer to the outer layer, which is beneficial to shorten the cold start time.

Key words: vehicle engineering, fuel cell, cold start, numerical model, hydrothermal characteristics

CLC Number: 

  • TM911.4

Table 1

Design and operating parameters of PEMFC"

参数单位
反应面积A235×10-4m2
质子交换膜、CL、GDL的厚度0.178、0.01、0.2mm
通道的长度、宽度、深度、肋宽100、1、1、1mm
CL、GDL的接触角θ110、110°
CL、GDL的渗透率K01.0×10-13、1.0×10-12m2
质子交换膜的等效质量EW1.1kg/mol

质子交换膜、CL、GDL、BP、冰的密度

质子交换膜、CL、GDL、BP、冰的比热容

质子交换膜、CL、GDL、BP的导热率

CL、GDL的孔隙率

阳极、阴极的传递系数传递系数

阳极、阴极的化学计量比

初始冰体积分数

1980、1000、1000、1000、920

833、2683、568、1580、2050

0.95、1.2、1.5、20.0

0.5、0.6

0.5、0.5

2.0、2.0

0

kg/m3

J/(kg·K)

W/(m·K)

-

-

-

-

Fig.1

Diagram of temperature stratification and heat transfer model of single fuel cell"

Table 2

Heat transfer relation expression"

表达式(i=a/c)注释
MEA

产热:

散热:

温度:

Q˙generate=Q˙rev+Q˙irrev+Q˙sg

Q˙i,loss=hmem,GDLAiTmem-Ti,GDL

CmeammeadTmea=Q˙generate-Q˙loss

假设不存在过冷水。其中,Q˙i,loss为从膜传至GDL的热;hmem,GDL为两层结构之间的传热系数;Ai为传热面积;Cmea为比热容;mmea为质量;Tmea为温度。
GDL

吸热:

散热:

温度:

Q˙i,GDL,gen=Q˙i,loss=hmea,GDLAiTmem-Ti,GDL

Q˙i,GDL,gas=hGDL,gasAGDLTi,GDL-Ti,gas

Q˙i,GDL,BP=hGDL,BPAGDL,BPTi,GDL-Ti,BP

CGDLmGDLdTi,GDL=Q˙i,GDL,gen-Q˙i,GDL,loss

GDL中没有冰产生。Q˙i,GDL,gen为GDL吸收的热,Q˙i,GDL,gas为从GDL传至GAS的热;Q˙i,GDL,BP为从GDL传至BP的热。
GAS

吸热:

散热:

温度:

Q˙i,gas,gen=(m˙c)i,inTi,gas,in+Q˙i,GDL,gas

Q˙i,gas,out=(m˙C)i,gas,outTi,gas,out

Q˙i,gas,BP=hgas,BPABPTi,gas-Ti,BP

Ci,gasmi,gasdTi,gas=Q˙i,gas,gen-Q˙i,gas,loss

气体通道中的温度分布简化为线性分布。Ti,gas,in为气体流道入口的温度;Ti,gas,out为气体流道出口的温度。
BP

吸热:

散热:

温度:

Q˙i,BP,gen=Q˙i,gas,BP+Q˙i,GDL,BP

Q˙i,BP,clant=hBP,clantABPTi,BP-Ti,clant

Ci,BPmi,BPdTi,BP=Q˙i,BP,gen-Q˙i,BP,loss

CLANT温度:Ci,clantmi,clantdTi,clant=Q˙i,BP,clant冷却循环关闭。

Fig.2

Comparison between experimental and simulation voltage"

Fig.3

Variation of voltage, heat generation andheat dissipation with ice volume"

Fig.4

Temperature change of each layerduring cold start"

Fig.5

Heat generation, heat dissipation and voltage under ice volume"

Fig.6

Effect of current on starting performance"

Fig.7

Temperature distribution at each positionbefore shutdown (253 K)"

Fig.8

Variation of maximum ice volume fraction with ambient temperature at startup"

1 Wang Jun-ye. Theory and practice of flow field designs for fuel cell scaling-up: a critical review[J]. Applied Energy, 2015, 157: 640-663.
2 Jiao Kui, Li Xian-guo. Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(19): 8171-8184.
3 Meng Hua. A PEM fuel cell model for cold-start simulations[J]. Journal of Power Sources, 2008, 178(1): 141-150.
4 Yao Lei, Peng Jie, Zhang Jian-bo, et al. Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15505-15520.
5 Amamou A, Kandidayeni M, Macias A, et al. Efficient model selection for real-time adaptive cold start strategy of a fuel cell system on vehicular applications[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19664-19675.
6 Du Qing, Jia Bin, Luo Yue-qi, et al. Maximum power cold start mode of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8390-8400.
7 Luo Yue-qi, Jiao Kui, Jia Bin. Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell[J]. Int J Heat Mass Tran, 2014, 77: 489-500.
8 Jiang F M, Wang C Y, Chen K S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342-B347.
9 Jiang H L, Xu L F, Struchtrup H, et al. Modeling of fuel cell cold start and dimension reduction simplification method[J]. Journal of The Electrochemical Society, 2020, 167(4): No. 044501.
10 Tajiri K, Tabuchi Y, Kagami F, et al. Effects of operating and design parameters on PEFC cold start[J]. Journal of Power Sources, 2007, 165(1): 279-286.
11 Schießwohl E, von Unwerth T, Seyfried F, et al. Experimental investigation of parameters influencing the freeze start ability of a fuel cell system[J]. Journal of Power Sources, 2009, 193(1): 107-115.
12 Min Hai-tao, Cao Qi-ming, Yu Yuan-bin, et al. A cold start mode of proton exchange membrane fuel cell based on current control[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5507-5520.
[1] Ji-zong LIU,Xiao-ping WU,Wei-hua KONG. Parameter configuration of fuel cell hybrid system for tram based on fish swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2004-2013.
[2] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[3] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[4] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[5] Jing DU,Hong-hui ZHAO,Yu-peng WANG,Tian-wei DING,Kai WEI,Kai WANG,Ling-hai HAN. Purge strategy optimization and verification of PEM fuel cell engine based on AMESim simulation model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2069-2076.
[6] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[7] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[8] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[9] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[10] Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033.
[11] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[12] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[13] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[14] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[15] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!