吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 891-896.doi: 10.7964/jdxbgxb201304008

• paper • Previous Articles     Next Articles

Numerical simulation of effect of horizontal aggregate distribution in asphalt mixtures on splitting test

PENG Yong1, SUN Li-jun2   

  1. 1. Institute of Transportation Engineering, Zhejiang University, Hangzhou 310058, China;
    2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2012-04-10 Online:2013-07-01 Published:2013-07-01

Abstract:

The projective of this research is to investigate the effect of horizontal aggregate distribution in asphalt mixtures on splitting test. Based on the aggregate homogeneity index and through loading in different directions of the horizontal cross-section of asphalt mixtures, the effect of horizontal aggregate distribution on the maximum stresses (in-plane principal stress and tensile stress) of the splitting test was numerically simulated using Finite Element Method (FEM) and verified by real test. Results show that the effect of horizontal aggregate distribution on the maximum stresses of the splitting test is insignificant and there is no obvious correlation between them. However, the correlation between the horizontal aggregate distribution and the variation of the maximum stresses is significant.

Key words: road engineering, asphalt mixture, horizontal aggregate distribution, splitting test, numerical simulation, aggregate homogeneity index, finite element method(FEM)

CLC Number: 

  • U414

[1] American Association of State Highway and Transportation Official (AASHTO). Segregation: Causes and Cures for Hot Mix Asphalt[M]. Washington DC: AASHTO, 1997.

[2] Williams R C, Duncan G R, White T. Sources, measurement, and effects of segregated hot-mix asphalt pavement. Report FHWA-SA-96-016, Washington DC: Federal Highway Administration, 1996.

[3] Mcghee K K, Flintsch G W, Edgar D E León Izeppi. Using high-speed texture measurements to improve the uniformity of asphalt mixture. Charlottesville: Virginia Transportation Research Council, 2003.

[4] Yue Z Q, William B, Isabelle Morin. Application of digital image processing to quantitative study of asphalt concrete microstructure//Transportation Research Record 1492,Washington DC: TRB, 1995:53-60.

[5] US Department of Transportation. Simulation, imaging and mechanics of asphalt pavements. Virginia: Turner-Fairbanks Highway Research Center, 1998.

[6] Obaidat M T, Msaeid H R, Gharaybeh F, et al. An innovative digital image analysis approach to quantify the percentage of voids in mineral aggregates of bituminous mixtures[J]. Canadian Journal of Civil Engineering, 1998, 25:1041-1049.

[7] Wang L B, Lai J S. Quantify specific surface area of aggregates using an imaging technique//Washington DC: TRB, 1998.

[8] Kose S. Development of a virtual test procedure for Asphalt concrete. Madison: University of Wisconsin-Madison, 2002.

[9] Rousan T M. Characterization of aggregate shape properties using a computer automated system . College Station: Texas A & M University, 2004.

[10] Tashman L, Masad E, Peterson B, et al. Internal structure analysis of asphalt mixes to improve the simulation of superpave gyratory compaction to field conditions[J]. Journal of the Association of Asphalt Paving Technologists, 2001, 70: 605-645.

[11] Hunter A E, Airey G D, Collop A C. Aggregate orientation and segregation in laboratory compacted asphalt samples//Washington DC: TRB, 2004.

[12] Azari H, McCuen R, Stuart K. The effect of vertical inhomogeneity on compressive properties of asphalt mixtures[J]. Journal of the Association of Asphalt Paving Technologists, 2004, 73: 121-145.

[13] Azari H. Effect of aggregate inhomogeneity on mechanical properties of asphalt mixtures//Advanced Characterisation of Pavement and Soil Engineering Materials, 2007: 291-302.

[14] Azari H, McCuen R, Stuart K. Effect of radial inhomogeneity on shear properties of asphalt mixtures[J]. Journal of Materials in Civil Engineering,2005, 17 (1): 80-88.

[15] 蒯海东. 基于数字图象处理的HMA集料形状及分布特征研究. 南京:东南大学,2005. Kuai Hai-dong. Study of form and distribution characters for aggregrates in HMA based on digital image processing. Nanjing:Southeast University,2005.

[16] 吴文亮,李智,张肖宁. 用数字图像处理技术评价沥青混合料均匀性[J]. 吉林大学学报:工学版,2009,39(4):921-925. Wu Wen-liang, Li Zhi, Zhang Xiao-ning. Evaluation of asphalt mixture homogeneity with digital image processing technique[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 921-925.

[17] 彭勇,孙立军,王元清,等. 数字图像处理在沥青混合料均匀性评价中的应用[J]. 吉林大学学报:工学版,2007,37(2):334-337. Peng Yong, Sun Li-jun, Wang Yuan-qing, et al. Application of digital image processing in evaluating homogeneity of asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2): 334-337.

[18] Peng Y, Sun L J. Towards an index of asphalt mixture homogeneity[J]. Road Materials and Pavement Design, 2009, 10 (3): 545-567.

[19] Chang G K, Meegoda J N. Micro-mechanic model for temperature effects of hot mixture asphalt concrete//Transportation Research Record 1687, Washington DC: TRB, 1999: 95-103.

[20] Buttlar W G, You Z. Discrete element modeling of asphalt concrete: Microfabric approach//Transportation Research Record,Washington DC, 2001, 1757:111-118.

[21] Guddati M N, Feng Z, Kim R. Toward a micromechanics-based procedure to characterize fatigue performance of asphalt concrete//Transportation Research Record,Washington DC, 2002, 1789:121-128.

[22] Wang L B, Myers L A, Mohammad L N, et al. Micromechanics study on top-down cracking //Transportation Research Record, Washington DC, 2003, 1853: 121-133.

[23] Dai Q, Sadd M H. Parametric model study of microstructure effects on damage behavior of asphalt samples[J]. International Journal of Pavement Engineering, 2004, 5(1): 19-30.

[24] Dai Q, Sadd M H, Parameswaran V, et al. Prediction of damage behaviors in asphalt materials using a micromechanical finite-element model and image analysis[J]. Journal of Engineering Mechanics, 2005, 131(7): 668-677.

[25] Kim H, Buttlar W G. Micromechanical fracture modeling of asphalt mixture using the discrete element method[J]. Journal of the Association of Asphalt Paving Technologists, 2005, 74: 209-223.

[26] Sadd M H, Dai Q, Parameswaran V. Microstructural simulation of asphalt materials: Modeling and experimental studies[J]. Journal of Materials in Civil Engineering, 2004, 16(2): 107-115.

[27] Papagiannakis A T, Abbas A, Masad E. Micromechanical analysis of viscoelastic properties of asphalt concretes//Transportation Research Record 1789,Washington DC, 2002, 113-120.

[28] Li G, Li Y, Metcalf J B, et al. Elastic modulus prediction of asphalt concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3): 236-241.

[29] Li Y, Metcalf J B. Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models[J]. Journal of Materials in Civil Engineering, 2005, 17(4): 407-415.

[30] Collop A C, McDowell G R, Lee Y. Modelling the behaviour of an idealised asphalt mixture using the distinct element method//Washington DC: TRB, 2004.

[31] You Z P, Adhikari S, Dai Q L. Three-dimensional discrete element models for asphalt mixtures [J]. Journal of Engineering Mechanics, 2008, 134(12): 1053-1063.

[32] 王新飞. 沥青混合料细观结构的粘弹性力学及断裂力学数值分析. 杭州:浙江大学,2011. Wang Xin-fei. Numerical analysis of viscoelastic and fracture mechanics of asphalt mixture microstructure. Hangzhou: Zhejiang University, 2011.

[33] 彭勇,孙立军,石永久,等. 沥青混合料均匀性与路用性能指标的关系[J]. 同济大学学报:自然科学版,2008,36(4):488-492. Peng Yong, Sun Li-jun, Shi Yong-jiu, et al. Relationship between homogeneity and indices of asphalt pavement performance[J]. Journal of Tongji University (Natural Science), 2008, 36(4): 488-492.

[1] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[2] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[3] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[4] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[5] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[6] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[7] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[8] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[9] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[10] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[11] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[12] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[13] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[14] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[15] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] CHEN Si-guo, JIANG Xu, WANG Jian, LIU Yan-heng, DENG Wei-wen, DENG Jun-yi. Mashup of vehicular ad-hoc network and universal mobile telecommunications system[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] MENG Chao, SUN Zhi-xin, LIU San-min. Multiple execution paths for virus based on cloud computing[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] XIAN Shu, ZHENG Jin, LU Xing, ZHANG Shi-peng. Identification approach of P2P flow based on the content redistribution model[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] LYU Yuan-zhi, WANG Shi-gang, YU Jue-qiong, WANG Xiao-yu, LI Xue-song. Display characteristics of one-dimensional integral imaging in virtual mode based on lenticular lens array[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] WANG Dan, LI Yang, NIAN Gui-jun, WANG Ke. An inhomogeneity mask for spatial watermarking[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] FENG Lin-han, QIAN Zhi-hong, SHANG Ke-cheng, ZHU Shuang. Improved hidden node collision avoidance strategy based on IEEE802.15.4[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .