吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (03): 688-694.doi: 10.7964/jdxbgxb201303022

Previous Articles     Next Articles

Global high-order sliding mode observer for induction motor

SHI Hong-yu1, FENG Yong1, ZHANG Niao-na2,3   

  1. 1. College of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China;
    2. Department of Automation, Changchun University of Technology, Changchun 130012, China;
    3. College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2012-03-27 Online:2013-05-01 Published:2013-05-01

Abstract: A global sliding mode observer for induction motor based on high-order sliding mode was proposed. The model is applied for precisely identifying the rotor velocity and the rotor flux of the induction motor. A global sliding mode surface was designed to improve the robustness of the observer and to implement the observer in the sliding motion through the entire response. A high-order sliding mode control law was utilized to obtain the smooth equivalent control signal directly. The control signal of the sliding mode observer can be applied to state observation, so that the better observing precision is realized. Simulation and experiment results show that the proposed sliding mode observer can eliminate the chattering phenomenon effectively, provide high observing precision. Moreover, the proposed observer is robust to load disturbance and internal parameter perturbation.

Key words: automatic control technology, induction motor, state observer, global sliding mode, high-order sliding mode

CLC Number: 

  • TP273
[1] Zhang Y C, Zhao Z M. Speed sensorless control for three-level inverter-fed induction motors using an extended luenberger observer//Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-5.

[2] Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 394-402.

[3] Murat B, Seta B, Metin G. Speed-sensorless estimation for induction motors using extended Kalman filters[J]. IEEE Transactions on Industry Electronics, 2007,54(1): 272-280.

[4] Kim S H, Park T S, Yoo J Y, et al. Speed sensorless vector control of an induction motor using neural network estimation[J]. IEEE Transactions on Industrial Electronics, 2001, 48(3): 609-614.

[5] Lascu C, Boldea I, Blaabjerg F. A class of speed-sensorless sliding-mode observers for high-performance induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3394-3403.

[6] 薛力军, 胡松华, 梁斌,等. 不确定性空间机器人自适应Terminal滑模控制方法[J]. 吉林大学学报:工学版, 2010, 40(3): 800-805. Xue Li-jun, Hu Song-hua, Liang Bin, et al. Adaptive terminal sliding mode control for uncertain space robot[J].Journal of Jilin University (Engineering and Technology Edition ),2010,40(3):800-805.

[7] Wai R J, Tu C H. Design of total sliding-mode-based genetic algorithm control for hybrid resonant-driven linear piezoelectric ceramic motor[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 563-575.

[8] Choi H S, Park Y H, Cho Y S, et al. Global sliding-mode control- Improved design for a brushless DC motor[J]. IEEE Control System Magazine, 2001, 21(3): 27-35.

[9] Li J C, Xu L Y, Zhang Z. An adaptive sliding-mode observer for induction motor sensorless speed control[J]. IEEE Transactions on Industry Electronics, 2005, 41(4): 1039-1046.

[10] 冯勇, 鲍晟, 余星火. 非奇异终端滑模控制系统的设计方法[J]. 控制与决策,2002,17(2):194-198. Feng Yong, Bao Sheng, Yu Xing-huo. Design method of non-singular terminal sliding mode control systems[J]. Control and Decision, 2002, 17(2): 194-198.

[11] 史宏宇, 冯勇. 感应电机高阶终端滑模磁链观测器的研究[J]. 自动化学报,2012,38(2): 287-294. Shi Hong-yu, Feng Yong. High-order terminal sliding mode flux observer for induction motors[J]. Acta Automatica Sinica, 2012, 38(2):287-294.

[12] Levant A. Higher-order sliding modes, differentiation and output feedback control[J]. International Journal of Control, 2003, 76(9/10): 924-941.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[8] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[9] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[10] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[11] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[12] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[13] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[14] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[15] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!