吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 511-515.doi: 10.13229/j.cnki.jdxbgxb201602027

• Orginal Article • Previous Articles     Next Articles

Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds

YANG Yue1, 2, ZHOU Lei-lei1, 2   

  1. 1.School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China;
    2.Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
  • Received:2014-06-25 Online:2016-02-20 Published:2016-02-20

Abstract: The ceramic coating fabricated by micro-arc oxidation at different current density is employed to improve the corrosion resistance of Friction Stir Welding (FSW) welds on aluminum alloy. The morphology and phase composition of the coating were investigated by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The surface roughness of the coating was characterized by Confocal Laser Scanning Microscopy (CLSM). The corrosion properties of the FSW welds before and after micro-arc oxidation were analyzed by Electrochemical Impedance Spectroscopy (EIS) and polarization curve (LSV). Results show that the thickness of the ceramic coating layer increases with the current density and it becomes more difficult to break down the coating. Once the coating is broken down a lot of melts will form and the surface roughness increases. Furthermore, the ceramic coating produced at current density of 10 A/m2 shows better wear resistance than the others.

Key words: material surface and interface, aluminum alloy, weld, micro-arc oxidation, corrosion resistance

CLC Number: 

  • TG146
[1] Ashassi-Sorkhabi H, Rafizadeh S H. Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits[J]. Surf Coat Technol, 2004,176(3): 318-326.
[2] 刘彩文, 吴士军. 铝合金表面微弧氧化技术的研究进展[J]. 内蒙古石油化工, 2006(6):7-9.
Liu Cai-wen, Wu Shi-jun. Development of micro-arc oxidation of aluminum surface[J]. Inner Mongolia Petrochemical Industry, 2006(6): 7-9.
[3] 栾国红. 轻合金搅拌摩擦焊技术及新发展[J]. 航空制造技术,2009(9): 26-31.
Luan Guo-hong. Friction-stir welding technology of light alloy and its new development[J]. Aviation Manufacturing Technology,2009(9): 26-31.
[4] 栾国红, 柴鹏. 搅拌摩擦焊技术应用现状和发展趋势[J]. 金属加工,2008 (24): 19-22.
Luan Guo-hong, Chai Peng. The application situation and development trend of Friction stir welding[J]. Machinist Metal Cutting, 2008 (24): 19-22.
[5] Jariyaboon M, Davenport A J, Ambat R, et al.The effect of cryogenic CO 2 cooling on corrosion behaviour of friction stir welded AA2024-T351[J]. Corrosion Engineering Science and Technology, 2009, 44(6): 425-432.
[6] Prasad Rao K, Janaki Ram G D, Stucker B E. Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings[J].Scripta Materialia, 2008, 58(11): 998-1001.
[7] Paglia C S, Buchheit R G. The influence of a propane gas torch flame post-weld heat treatment on the mechanical and corrosion properties of a 2219-T87 friction stir weld[J]. Welding and Cutting, 2007, 6(2): 96-102.
[8] Padovani C G, Davenport A J, Connolly B J, et al. Corrosion and protection of friction stir welds in aerospace aluminium alloys[J]. Metallurgia Italiana, 2008, 100(9): 29-42.
[9] Kalita S J. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351[J].Applied Surface Science, 2011, 257(9): 3985-3997.
[10] Liang J, Bala P, Blawert C,et al. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes[J]. Electrochimica Acta, 2009,54(14): 3842-3850.
[11] Matykina E, Arrabal R, Monfort F, et al. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions[J]. Applied Surface Science,2008,255(15): 2830-2839.
[12] Chen Z, Li G, Wu Z, et al. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing[J]. Materials Science and Engineering: A, 2011, 528(3): 1409-1414.
[13] 陈根余, 吴汉华, 李乐. 电学参数对胶体中工业纯钛微弧氧化膜特性的影响[J].物理学报, 2010, 59(3): 1958-1963.
Chen Gen-yu, Wu Han-hua, Li Le. The affect of electrical parameters to the characteristics of the micro-arc oxidation coatings in colloid industrial pure titanium[J]. Acta Physica Sinica, 2010, 59(3): 1958-1963.
[14] Bayati M R, Golestani-Fard F, Moshfegh A Z. Photo-degradation of methelyne blue over V 2 O 5 -TiO 2 nano-porous layers synthesized by micro arc oxidation[J]. Catalysis Letters, 2010, 134(1/2): 162-168.
[15] Srinivasan P B, Liang J, Blawert C, et al. Dry sliding wear behaviour of magnesium oxide and zirconium oxide plasma electrolytic oxidation coated magnesium alloy[J].Applied Surface Science, 2010, 256(10): 3265-3273.
[1] ZHU Jian-feng, ZHANG Jun-yuan, CHEN Xiao-kai, HONG Guang-hui, SONG Zheng-chao, CAO Jie. Design modification for automotive body structure based on seat pull safety performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1324-1330.
[2] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[3] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[5] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[6] FU Wen-zhi, LIU Xiao-dong, WANG Hong-bo, YAN De-jun, LIU Xiao-li, LI Ming-zhe, DONG Yu-qi, ZENG Zhen-hua, LIU Gui-bin. Multi-point forming process of 1561 aluminum alloy surfaces [J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[7] WANG Chun-sheng, ZOU Li, YANG Xin-hua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory [J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[8] XING Hai-yan, GE Hua, LI Si-qi, YANG Wen-guang, SUN Xiao-jun. Hidden defect metal magnetic memory identification for welded joints based on fuzzy membership and maximum likelihood estimation [J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[9] CHEN Chao, ZHAO Sheng-dun, CUI Min-chao, HAN Xiao-lan, FAN Shu-qin, ISHIDA Tohru. Experimental study on reshaping method for joining AL5052 aluminum alloy sheets [J]. 吉林大学学报(工学版), 2017, 47(5): 1512-1518.
[10] GU Xiao-yan, LIU Ya-jun, SUN Da-qian, XU Feng, MENG Ling-shan, GAO Shuai. Microstructures and mechanical properties of transient liquid phase diffusion bonded S355 steel/6005A aluminum alloy joint [J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[11] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[12] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[13] GUAN Qing-feng, LI Yan, HOU Xiu-li, YANG Sheng-zhi, WANG Xiao-tong. Modification of solid solution Mg-Gd-Y-Nd alloy irradiated by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[14] LAN Feng-chong, LI Zhong-chao, ZHOU Yun-jiao, CHEN Ji-qing. Stress distribution and strength prediction of aluminum-magnesium alloy adhesive-bonded single-lap joints [J]. 吉林大学学报(工学版), 2015, 45(3): 726-732.
[15] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions [J]. 吉林大学学报(工学版), 2015, 45(3): 884-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[6] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[7] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[8] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[9] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .
[10] SU Shu-jie, HE Lu. Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads[J]. 吉林大学学报(工学版), 2018, 48(2): 440 -447 .