吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 567-576.doi: 10.13229/j.cnki.jdxbgxb201702031

Previous Articles     Next Articles

Energy saving control method of downslope speed for high-voltage transmission line inspection robot

YANG Zhi-yong1, WU Gong-ping1, 2, WANG Wei1, GUO Lei1, YANG Shou-dong3, CAO Qi3, ZHANG Yi-jie1, HU Peng1   

  1. 1.School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
    2.Guangdong Keystar Intelligence Robot Co., Ltd., Foshan 528300, China;
    3.Baishan Power Supply Bureau,State Grid Jilin Electric Power Co.,Baishan 134300, China
  • Received:2015-10-26 Online:2017-03-20 Published:2017-03-20

Abstract: In order to decrease the energy consumption of the inspection robot for high-voltage transmission lines and control the downslope speed, a speed control method without motive power is proposed. The proposed method combines the regenerative braking and dynamic braking. By analyzing the force of the robot in downslope process, speed control and energy recovery schemes are designed, which combine front wheel regenerative braking and rear wheel dynamic braking. According to the catenary construction feature of the lines, a strategy to control the robot at constant speed without motive power in the downslope process is presented. Based on characteristic analysis of the front and rear wheels when the robot is going downslope at constant speed without motive power, the range of speed of the direct current dynamo of front wheel for energy feedback is obtained. The speed control of the rear wheel energy consumption is realized by adjusting PWM wave duty cycle. The PWM wave duty cycle error of the control system, which is caused by the factors, such as sensor check and line working conditions, is corrected by adopting RBF neural network control model. Experiments are carried out on both simulated and real high-voltage transmission lines. Results show that the proposed method can achieve the purpose of downslope speed control and saving energy consumption.

Key words: automatic control technology, inspection robot, high-voltage transmission lines, energy braking, regenerative braking

CLC Number: 

  • TP242.6
[1] Pouliot N, Montambault S. Field‐oriented developments for LineScout technology and its deployment on large water crossing transmission lines[J]. Journal of Field Robotics, 2012, 29(1): 25-46.
[2] Peng W, Feng L, Guanqun W, et al. Research on self-power supply system of inspection robot for high-voltage power transmission lines[C]∥2013 Third International Conference on Intelligent System Design and Engineering Applications,IEEE, 2010:244-247.
[3] 白玉成, 吴功平, 肖华,等. 输电线路感应取电装置参数匹配方法[J]. 电力系统自动化, 2010, 34(21):75-80.
Bai Yu-cheng, Wu Gong-ping, Xiao Hua, et al. A parameter matching method for power induction devices on power transmission lines[J]. Automation of Electric Power Systems, 2010, 34(21):75-80.
[4] 孟遂民, 孔伟.架空输电线路设计[M]. 北京:中国电力出版社,2007:62-67.
[5] 边耀璋. 汽车新能源技术[M]. 北京:人民交通出版社,2003.
[6] 黄斐梨, 王耀明, 姜新建,等. 电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究[J]. 电工技术学报, 1995, 9(3):28-31.
Huang Fei-li, Wang Yao-ming, Jiang Xin-jian, et al. Study on regenerative braking of permanent magnet brushless DC motor drive system at low speed for electric vehicles[J]. Transactions of China Electrotechnical Society, 1995, 9(3):28-31.
[7] 王昕, 姜继海. 轮边驱动液压混合动力车辆再生制动控制策略[J]. 吉林大学学报:工学版, 2009,39(6):1544-1549.
Wang Xin, Jiang Ji-hai. Regenerative braking control strategy for wheel drive hydraulic hybrid vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(6): 1544-1549.
[8] 何仁, 陈庆樟. 用双开关磁阻电机的汽车能量再生制动技术[J]. 吉林大学学报:工学版, 2009, 39(5):1137-1141.
He Ren, Chen Qing-zhang.The control strategy of energy regeneration for electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1137-1141.
[9] 林海, 何瑞玲, 周海森,等. 三相无刷直流电机改进型脉宽调制策略[J]. 电力系统及其自动化学报, 2013, 25(6):79-83.
Lin Hai, He Rui-ling, Zhou Hai-sen, et al. Improved PWM scheme for permanent magnet brushless DC motor drives[J]. Proceedings of the CSU-EPSA, 2013, 25(6):79-83.
[10] 徐庆宏, 戴先中. 基于在线学习RBF神经网络的汽门开度自适应补偿控制方法[J]. 电机与控制学报, 2010, 14(2):13-19.
Xu Qing-hong, Dai Xian-zhong. Online learning RBF neural network-based adaptive compensative control scheme for governor system[J].Electric Machines and Control, 2010, 14(2):13-19.
[11] 尹明, 李庚银, 张建成,等. 直驱式永磁同步风力发电机组建模及其控制策略[J]. 电网技术, 2007, 31(15):61-65.
Yin Ming, Li Geng-yin, Zhang Jian-cheng, et al. Modeling and control strategies of directly driven wind turbine with permanent magnet synchronous generator[J].Power System Technology, 2007, 31(15):61-65.
[12] 韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究[J]. 自动化学报, 2012, 38(7):1083-1090.
Han Hong-gui, Qiao Jun-fei, Bo Ying-chun. On structure design for RBF neural network based on information strength[J]. Acta Automatica Sinica, 2012, 38(7):1083-1090.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] QIN Da-tong, LIN Yu-pei, HU Jian-jun, GUO Zi-han. Regenerative braking control strategy of plug-in hybrid electric vehicle based on speed ratio control continuously variable transmission [J]. 吉林大学学报(工学版), 2018, 48(2): 380-386.
[8] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[9] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[10] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[11] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[12] JIN Li-qiang, SUN Zhi-xiang, ZHENG Ying. Coordinated anti-lock braking control of compound regenerative braking system in electric-wheel vehicle [J]. 吉林大学学报(工学版), 2017, 47(5): 1344-1351.
[13] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[14] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[15] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!