Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2792-2798.doi: 10.13229/j.cnki.jdxbgxb.20221562

Previous Articles    

Effect of Gd on microstructure and hydrogen embrittlement of AZ91‐extruded magnesium alloy

Yu-lai SONG1,2(),Wei-guang LI1,2,Lin-yang ZHANG3,Qing-jun SONG3,Hua ZHANG3,Jun LI3,Qing LIU1,2   

  1. 1.Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    3.Metal Materials Department of Materials & lightweight Institute,General R&D Institute,China FAW Co. ,Ltd. ,Changchun 130011,China
  • Received:2022-11-10 Online:2024-10-01 Published:2024-11-22

Abstract:

AZ91 and Az91-xGd(x=0.5,1.0,1.5)magnesium alloys were prepared by extrusion method. The microstructures, hydrogen charging and hydrogen embrittlement behavior of AZ91 and Az91-xGd alloys were studied by scanning electron microscopy, electrochemical oxidation and slow strain rate tensile methods. The results show that with the addition of Gd, the size and quantity of β-Mg17Al12 in AZ91 decrease, and the distribution is uniform. Under the same hydrogen-charged conditions, with the increase of rare earth Gd content, the hydrogen concentration in extruded magnesium alloy AZ91 gradually decreases, which solves the problem of partial polymerization of hydrogen in the alloy to a certain extent, greatly reduces the hydrogen embrittlement susceptibility, and effectively improves the hydrogen embrittlement resistance.

Key words: materials processing engineering, magnesium alloy, Gd, hydrogen embrittlement

CLC Number: 

  • TG146.22

Table 1

AZ91 and Gd modified extruded AZ91 components(wt%)"

合 金AlZnMnGdFeMg
AZ918.570.620.28-0.0009Bal.
AZ91-0.5Gd8.550.610.260.480.0006Bal.
AZ91-1.0Gd8.560.590.241.020.0003Bal.
AZ91-1.5Gd8.540.600.241.510.0003Bal.

Fig.1

Tensile specimen dimensions for stress corrosion cracking"

Fig.2

XRD patterns of extruded magnesium alloys AZ91 and AZ91-xGd"

Fig.3

SEM micrographs of extruded magnesium alloys"

Fig.4

Change of hydrogen overflows current density with time for extruded magnesium alloys AZ91 andAZ91-xGd under the same hydrogen charging current density"

Table 2

Hydrogen concentration of extruded magnesium alloys AZ91 and AZ91-xGd"

合金充氢电流密度/ (mA·cm-2氢浓度/ (10-6mol·cm-3
AZ9100.04
703.86
AZ91-0.5Gd00.04
700.78
AZ91-1.0Gd00.03
700.54
AZ91-1.5Gd00.03
700.41

Fig.5

Mechanical properties of extruded magnesium alloys AZ91 and AZ91-xGd under the same pre-charged current density"

Fig.6

Hydrogen embrittlement susceptibility of extruded magnesium alloys AZ91 and AZ91-xGd at the same hydrogen charging current density"

Fig.7

Fracture morphology of extruded magnesium alloys AZ91 and AZ91-1.0Gd at 70 mA/cm2 hydrogen charging current density"

Fig.8

Cross sections of extruded magnesium alloys AZ91 and AZ91-1.0Gd at 70 mA/cm2 hydrogen charging current density"

1 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys, 2021, 9(3): 705-747.
2 Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion[J]. Advanced Engineering Materials, 2015, 17(4): 400-453.
3 Xu S W, Kamado S, Honma T. Effect of homogenization on microstructures and mechanical properties of hot compressed Mg-9Al-1Zn alloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2385-2393.
4 Satya Prasad S V, Prasad S B, Verma K, et al. The role and significance of magnesium in modern day research—a review[J].Journal of Magnesium and Alloys, 2022, 10(1): 1-61.
5 Luo K, Zhang L, Wu G H, et al. Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys[J]. Journal of Magnesium and Alloys, 2019, 7(2): 345-354.
6 Yan M, Weng Y. Study on hydrogen absorption of pipeline steel under cathodic charging[J]. Corrosion Science, 2006, 48(2): 432-444.
7 Carter T J, Cornish L A. Hydrogen in metals[J]. Engineering Failure Analysis, 2001, 8(2): 113-121.
8 Chen J, Wang J, Han E, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1M Na2SO4 solution[J]. Materials Science and Engineering: A, 2008, 488(1-2): 428-434.
9 Merson E, Poluyanov V, Myagkikh P, et al. Fractographic features of technically pure magnesium, AZ31 and ZK60 alloys subjected to stress corrosion cracking[J]. Materials Science & Engineering A, 2020, 772(13):No.138744.
10 Winzer N, Cross C E. On the role of β particles in stress corrosion cracking of Mg-Al alloys[J]. Metallurgical and Materials Transactions A, 2008, 40(2): 273-274.
11 Chen J, Wang J Q, Han E H, et al. Effect of hydrogen on corrosion and stress corrosion cracking of AZ91 alloy in aqueous solutions[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 1-7.
12 Winzer N, Atrens A, Dietzel W, et al. Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys[J]. Materials Science and Engineering A, 2008, 488(1-2): 339-351.
13 Winzer N, Atrens A, Dietzel W, et al. Fractography of stress corrosion cracking of Mg-Al alloys[J]. Metallurgical and Materials Transactions A, 2008, 39(5): 1157-1173.
14 Kamilyan M, Silverstein R, Eliezer D. Hydrogen trapping and hydrogen embrittlement of Mg alloys[J]. Journal of Materials Science, 2017, 52(18): 11091-11100.
15 Xi G, Zhao X, Ma Y, et al. Comparative study on corrosion behavior and mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd alloys[J]. Acta Metallurgica Sinica(English Letters), 2022,35(1): 1-13.
16 Wu G, Wang C, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys[J]. Journal of Magnesium and Alloys, 2021, 9(1): 1-20.
17 Zhao T L, Liu Z Y,   Hu S S, et al. Effect of hydrogen charging on the stress corrosion behavior of 2205 duplex stainless steel under 3.5wt.% NaCl thin electrolyte layer[J]. Journal of Materials Engineering and Performance, 2017, 26(6): 2837-2846.
18 Mościcki A, Chmiela B, Sozańska M. Corrosion of WE43 and AE44 magnesium alloys in sodium sulfate solution[J]. Solid State Phenomena, 2015, 3763(227): 91-94.
[1] Shu-mei LOU,Yi-ming LI,Xin LI,Peng CHEN,Xue-feng BAI,Bao-jia CHENG. Thermal deformation behavior of graphene nanosheets reinforced 7075Al based on BP neural network and Arrhenius constitutive equation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1237-1245.
[2] Xian-yong ZHU,Liang-wen XIE,Yue-xiang FAN,Cheng JIANG,Wei-jia SUN,Peng WANG,Xiong XIAO. Effect of friction stir processing parameters on the surface modification layer of magnesium alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2263-2271.
[3] Yan LIANG,Qiang WANG,Yu-lai SONG,Yao-hui LIU. Performance of repaired 5Cr5MoV die steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1301-1307.
[4] DONG Wei,SONG Bai-da,QIU Li-tao,SUN Hao-tian,SUN Ping,PU Chao-jie. Effect of fuel ratio of two injections on combustion and emissions in warm-up process of gasoline direct injection engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1755-1761.
[5] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[6] QIN Qiu-shi, WU Zhi-jun, YU Xiu-min, YANG Song, BAO Long. Simulation of stratified charge combustion of GDI engine [J]. 吉林大学学报(工学版), 2017, 47(1): 105-112.
[7] YU Xiu-min, SHANG Zheng, ZHANG Yue-tao, DU Yao-dong. Simulation of EGR on combustion and emission of gasoline direct-injection engine [J]. 吉林大学学报(工学版), 2016, 46(4): 1109-1117.
[8] SUN Wen-xu, HONG Wei, WANG Jian-jun, XIE Fang-xi, YANG Jun-wei, TANG Xu-wen. First-cycle ignition and rotation characteristics of GDI engine direct-start mode [J]. 吉林大学学报(工学版), 2015, 45(5): 1443-1449.
[9] GUAN Qing-feng, LI Yan, HOU Xiu-li, YANG Sheng-zhi, WANG Xiao-tong. Modification of solid solution Mg-Gd-Y-Nd alloy irradiated by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[10] HU Gui-jun, WANG Yan-ping, YAN Li, LI Gong-yu, LI Li. Mode demultiplexing based on CMA under the condition of differential group delay [J]. 吉林大学学报(工学版), 2015, 45(3): 961-965.
[11] LAN Feng-chong, LI Zhong-chao, ZHOU Yun-jiao, CHEN Ji-qing. Stress distribution and strength prediction of aluminum-magnesium alloy adhesive-bonded single-lap joints [J]. 吉林大学学报(工学版), 2015, 45(3): 726-732.
[12] CHENG Qiang, ZHANG Zhen-dong, GUO Hui, XIE Nai-liu. Electro-magnetic-thermal coupling of GDI injector [J]. 吉林大学学报(工学版), 2015, 45(3): 806-813.
[13] RUAN De-wen, SUDAGAR Jothi, LIANG Ya-qin, ELANSEZHIAN Rasu, LIAN Jian-she. Effects of surfactants on corrosion behavior of chromium-free electroless nickel deposit on magnesium alloy [J]. 吉林大学学报(工学版), 2013, 43(02): 363-367.
[14] YU Xiu-min, TAN Xing-wen, MA Jun, LI Guo-liang, Dong-wei, QI Wan-qiang, CUI Feng. Gasoline direct injection engine start control [J]. 吉林大学学报(工学版), 2011, 41(6): 1554-1558.
[15] LI Zhi-long, HUANG Cheng-jie, LI Li-guang, WU Zhi-jun. Simultaneous measurement of particle field and size distribution by two digital cameras [J]. 吉林大学学报(工学版), 2011, 41(05): 1503-1506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!