Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3450-3459.doi: 10.13229/j.cnki.jdxbgxb.20231257

Previous Articles     Next Articles

Stability analysis and scale synthesis of new multifunctional aerial work platform

Wei-jun WU1,2(),Jiang-bo WU1,Jia-le ZHANG1,Qiang ZHOU1,Qiao-hong YANG2,Xun-peng QIN2()   

  1. 1.State Power Investment Group Jiangxi Electric Power Co. ,Ltd. ,New Energy Power Generation Branch,Nanchang 330038,China
    2.Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology,Wuhan 430070,China
  • Received:2023-09-30 Online:2024-12-01 Published:2025-01-24
  • Contact: Xun-peng QIN E-mail:810920895@qq.com;qxp915@sohu.com

Abstract:

To increase the operating range and improve the flexibility of the mechanism, a scissor aerial work platform with a rotating and telescopic power device was developed. Based on the preliminary design of the basic dimensions of the scissor aerial work platform, an analysis of the anti-overturning stability was conducted. When the operating platform was rotated to an angle of 90° with the bottom plate, the mechanical model was established to verify its load stability requirements by the stability coefficient method, and the speed and acceleration of the working platform were calculated using the cartesian coordinate method and the instantaneous velocity center method. The hydraulic cylinder thrust was obtained by the principle of virtual work, and the hinge point position of the lower hydraulic cylinder was optimized by genetic algorithm. Finally, dynamic simulation and comparative analysis were performed using ADAMS, and combined with the physical acceleration and velocity measurement results of the work platform, the correctness of the theoretical calculation and simulation results is verified.

Key words: mechanical engineering, scissor aerial platform, stability, kinematics, dynamics

CLC Number: 

  • TH137.331

Fig.1

Extreme contraction and extreme stretching conditions of shear fork aerial working platform"

Fig.2

Rotary and retractable shearing fork mechanism working platform"

Table 1

Load direction and point of application"

载荷类型方向作用点
结构载荷竖直向下自下而上第三组剪叉臂中间铰点孔的中心位置
手动操作力垂直于工作平台左上角与倾覆边线的连线工作平台左上角上方1.1 m处
风载水平

工作人员:工作平台上1.1 m处

工具材料:工作平台上0.5 m处

作业平台:距倾覆边线垂直距离5 m处

测试载荷水平

倾斜地面:工作平台右上角

水平地面:工作平台右上角上方0.3 m处

额定载荷竖直向下平台最右端靠近边缘0.l m处

Fig.3

Rotary and retractable shearing fork mechanism working platform"

Fig.4

Theoretical mechanical model of shear andfork mechanism"

Fig.5

Genetic algorithm iteration curve"

Table 2

Comparison of lower hydraulic cylinder hinge point position data before and after optimization"

优化N1O1M1O3液压缸推力F/N
优化前70581339 950
优化后68969938 800

Fig.6

Thrust comparison curve of lower hydraulic cylinder before and after optimization"

Table 3

Constraint relationship between each structural part"

结构件1结构件2运动副类型
液压缸液压缸活塞杆移动副
液压缸液压缸铰点销转动副
工作平台底板滑块剪叉臂移动副
工作平台工作平台底板滑块转动副
工作平台铰点销剪叉臂转动副
剪叉臂剪叉臂销转动副
基座滑块剪叉臂移动副
基座铰点销剪叉臂转动副
基座地平面固定副

Fig.7

Thrust and curve of upper and lower hydraulic cylinder"

Fig.8

Lower hydraulic cylinder thrust simulation and theoretical derivation comparison curve"

Fig.9

Working platform speed simulation and theoretical derivation comparison curve"

Fig.10

Comparison curve between acceleration simulation and theoretical derivation of working platform"

Fig.11

resultant force at articulation points A2 and B2"

Fig.12

Center angular velocity of the first shear fork arm"

Fig.13

Physical diagram of scissor telescopic arm"

Fig.14

Acceleration change curve of physical work platform"

Fig.15

Physical work platform speed curve"

1 范茂, 李世芸. 基于ADAMS的压紧机构运动学仿真研究[J].软件, 2020,41(2):145-148.
Fan Mao, Li Shi-yun. Kinematic simulation of compression mechanism based on ADAMS[J]. Software,20, 41(2): 145-148.
2 Zhong G, Yi H, Dou W. Design of dual-drive vertical lift servo system and synchronous control performance analysis[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2927-2937.
3 Doçi I, Lajqi S, Makolli S, et al. Scissor lift dynamic analysis and motion regulation for the case of lifting with maximum load[J]. Trans & Motauto World, 2021, 6(2): 38-42.
4 吴硕博, 董文龙, 孟哲, 等. 剪叉式作业平台稳定性仿真分析与计算[J]. 起重运输机械, 2021(19):73-76.
Wu Shuo-bo, Dong Wen-long, Meng Zhe, et al. Stability simulation analysis and calculation of shear fork operating platform[J]. Hoisting and Transporting Machinery, 2021(19):73-76.
5 王斌. 剪叉式高空作业平台上车液压系统的稳定性分析[J]. 矿业装备, 2023(1): 160-162.
Wang Bin. Stability analysis of on-board hydraulic system of shear fork aerial work platform[J]. Mining Equipment, 2023(1): 160-162.
6 高旭宏, 徐向阳, 王书翰, 等. 自行式高空作业平台的动态稳定性分析[J].中南大学学报: 自然科学版,2017, 48(10): 2836-2842.
Gao Xu-hong, Xu Xiang-yang, Wang Shu-han, et al. Analysis of dynamic stability of self-propelled aerial work platform [J]. Journal of Central South University (Science and Technology),2017,48(10):2836-2842.
7 喻向阳, 黄斌, 银峰, 等. 基于有限元分析的剪叉式高空作业平台叉臂轻量化设计[J]. 建设机械技术与管理, 2023, 36(1): 57-60.
Yu Xiang-yang, Huang Bin, Yin Feng, et al. Lightweight design of fork arm of shear fork aerial working platform based on finite element analysis[J]. Construction Machinery Technology and Management, 2023, 36(1): 57-60.
8 Danh T H, Ngoc N D, Nga N T T, et al. Application of MOORA and MEREC methods to select the best schema of scissors mechanisms[J]. Journal of Military Science and Technology, 2022(FEE): 177-184.
9 吉喆, 董文龙, 刘涛, 等.剪叉式高空作业车液压缸安装参数优化[J].起重运输机械, 2021(22): 43-46.
Ji Zhe, Dong Wen-long, Liu Tao, et al. Optimization of hydraulic cylinder installation parameters of shear fork aerial truck[J]. Hoisting and Transporting Machinery, 2021(22): 43-46.
10 刘吉超, 张伟康, 郑自冲, 等. 剪叉式高空作业平台举升机构参数匹配研究[J]. 机电工程, 2022, 39(2):173-179.
Liu Ji-chao, Zhang Wei-kang, Zheng Zi-chong, et al. Research on parameter matching of lifting mechanism of shear fork aerial working platform [J]. Mechanical and Electrical Engineering,2022, 39(2): 173-179.
11 He S, Ouyang M, Gong J, et al. Mechanical simulation and installation position optimisation of a lifting cylinder of a scissors aerial work platform[J]. The Journal of Engineering,2019,2019(13):74-78.
12 秦基磊, 史蔚. 伸缩臂式自行走高空作业车液压系统的改进探讨[J]. 内燃机与配件, 2021(23):68-69.
Qin Ji-lei, Shi Wei. Discussion on improvement of hydraulic system of telescopic boom self-propelled aerial work vehicle[J]. Internal Combustion Engines and Accessories, 2021(23): 68-69.
13 王铎, 王尚斌, 李超, 等.基于虚功原理剪叉机构驱动力计算[J]. 锻压装备与制造技术, 2020, 55(2):36-38.
Wang Duo, Wang Shang-bin, Li Chao, et al. Calculation of driving force of shear fork mechanism based on virtual work principle[J]. Forging Equipment & Manufacturing Technology, 2020, 55(2): 36-38.
14 刘军. 一种高空作业车液压系统设计与仿真[J]. 液压与气动, 2021, 45(7):154-163.
Liu Jun. Design and simulation of a hydraulic system for aerial work vehicle [J]. Chinese Hydraulics & Pneumatics, 2021, 45(7):154-163.
15 刘志, 纪爱敏, 张磊, 等. 剪叉式高空作业平台上车液压系统的稳定性研究[J]. 机电工程,2020, 37(6):600-606.
Liu Zhi, Ji Ai-min, Zhang Lei, et al. Study on the stability of on-board hydraulic system of shear fork aerial work platform[J]. Mechanical and Electrical Engineering, 2020, 37(6): 600-606.
16 何宇, 孙瑜. 基于ADAMS的液压叉剪式升降机的仿真研究[J]. 萍乡学院学报, 2018, 35(3): 44-47.
He Yu, Sun Yu. Simulation research of hydraulic fork shear elevator based on ADAMS [J]. Journal of Pingxiang University, 2018, 35(3): 44-47.
17 邓彧, 陆进添, 谢仁军. 一种保障高空作业平台稳定性的重心分配方法[J]. 建筑机械化, 2021, 42(12):35-37.
Deng Yu, Lu Jin-tian, Xie Ren-jun. A method of gravity distribution to ensure the stability of aerial work platform [J]. Construction Mechanization, 2021, 42(12): 35-37.
[1] Lei SHANG,Ping YANG,Xiang-guo YANG,Jian-xin PAN,Jun YANG,Meng-ru ZHANG. Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2401-2413.
[2] Lin JIANG,Guo-long LI,Shi-long WANG,Kai XU,Zhe-yu LI. Thermal expansion error modeling of feed axis based on principal component regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2149-2155.
[3] Xue-lian GUO,Wan-shui HAN,Tao WANG,Kai ZHOU,Xiu-shi ZHANG,Shu-ying ZHANG. Assessment method of resistant overturning stability safety factors of curved bridge under customized transport vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2229-2237.
[4] Xiao-hong TANG,Yong-jian GONG. Trajectory planning algorithm for grasping manipulator considering energy consumption and load factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1862-1868.
[5] Rong LUO,Yu LIANG,Long-chang NIU,Ting-ting HUANG,Qiang MIAO. Threshold value of water stability evaluation index of asphalt mixture under multi-temperature conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1966-1977.
[6] Ze-qiang ZHANG,Can WANG,Jun-qi LIU,Dan JI,Si-lu LIU. Parallel row ordering problem based on improved sparrow search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1851-1861.
[7] Yong-sheng WANG,Bao-hong LYU,Jin-ke WANG,Da-jiang YANG,Si-zhe XIONG,Bin-wei ZHANG. Stability analysis of novel ground anchor and beam string debris flow grid dam [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1719-1729.
[8] Cai-xia SHU,Jia YANG,Qing-xi LIAO,Xing-yu WAN,Jia-cheng YUAN. Design and experiment of diversion type double-cylinder cyclone separation system for rapeseed combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1807-1820.
[9] Yun PU,Yin XU,Hai-xu LIU,Yi-fan TAN. An improved car⁃following model for connected and automated vehicles considering impact of multiple vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1285-1292.
[10] Xue-jing DU,Ning WANG,Jie ZHANG,Yu-long PEI. Control strategy of lateral stability of semi-trailer train in dangerous section of cold area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 996-1006.
[11] Wan-bin YAN,Kong-hua YANG,Kai-diao JIN,Su-jiao CHEN,Yong-hua ZHANG,Chun-bao LIU. Internal flow field in a hydrodynamic torque converter with dynamic hybrid RANS/LES model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 926-937.
[12] Da-yi QU,Ke-kun ZHANG,Yuan GU,Tao WANG,Hui SONG,Shou-chen DAI. Analysis of lane⁃changing decision⁃making behavior and molecular dynamics modeling for autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 700-710.
[13] Li HUI,Lei JIN,Wan-wan SONG,Song ZHOU,Jin-lan AN. Crack growth rate of SMA490BW steel in different welding areas for bogie [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 650-656.
[14] Jiao-rong WU,Qing-kai LIN,Yong-qi DENG. Identification method of potential public transportation lane demand based on bus line operation stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 692-699.
[15] Yu-mei LIU,Jia-xiang SHENG,Jiao-jiao ZHUANG,Rong CHEN,Da-long ZHAO. Structural optimization and dynamic characteristics of high⁃speed variable gauge bogie [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 453-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[10] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .